Navigation Links
New microsensor measures volatile organic compounds in water and air on-site

Researchers at the Georgia Institute of Technology have developed a miniature sensor that uses polymer membranes deposited on a tiny silicon disk to measure pollutants present in aqueous or gaseous environments. An array of these sensors with different surface coatings could be used during field-testing to rapidly detect many different chemicals.

Since this new sensor allows water and air samples to be analyzed in the field, it is an improvement over classical techniques that require samples be carried back to the laboratory for analysis. This research, funded by the National Science Foundation, was presented on August 20 at the American Chemical Societys 234th National Meeting.

The heart of the disk-shaped sensor is a microbalance that measures the mass of pollutant molecules.

When pollutant chemicals get adsorbed to the surface of the sensor, a frequency change of the vibrating microbalance provides a measure of the associated mass change, said Oliver Brand, associate professor in Georgia Techs School of Electrical and Computer Engineering.

Cantilever-type balances, which move up and down like a diving board, are common when measuring the amount of a chemical in the gas phase. However, the mechanical vibrations of the balance used to detect the mass changes are damped in liquids, causing the sensitivity of the balance to decrease. Thus, Brand and graduate students Jae Hyeong Seo, Stuart Truax and Kemal Safak Demirci searched for structures whose vibrations were less affected by the surrounding medium.

The researchers chose a silicon disk platform for the sensor. The disk shears back and forth around its center with a characteristic resonance frequency between 300 and 1,000 kHz, depending on its geometry. With proper actuation and sensing elements integrated onto the microstructures, Brand can electrically excite the resonator and sense these rotational oscillations.

Since each sensor has a diameter of approximately 200-300 microns, or the average diameter of a human hair, an array of a dozen sensors is only a few millimeters in size.

To determine how to selectively detect multiple pollutants in the same sample, Brand began collaborating with Boris Mizaikoff, an associate professor in Georgia Techs School of Chemistry and Biochemistry and director of its Applied Sensors Laboratory.

Mizaikoff and graduate students Gary Dobbs and Yuliya Luzinova selected commercially available hydrophobic polymers and deposited them as thin film membranes on the sensor surface. They continue to investigate innovative ways to consistently deposit the polymers at the disk surface, while ensuring sufficient adhesion for long-term field applications.

By modifying the silicon transducer surface with different polymer membranes, each sensor becomes selective for groups of chemicals, explained Mizaikoff.

An array of these sensors, each sensor with a different chemically modified transducer surface, can sense different pollutants in a variety of environments ranging from industrial to environmental and biomedical monitoring applications.

Brand and Mizaikoff aim to detect volatile organic compounds (VOCs) in aqueous and gaseous environments. VOCs are pollutants of high prevalence in the air and surface and ground waters. They are emitted from products such as paints, cleaning supplies, pesticides, building materials and furnishings, office equipment and craft materials.

A common VOC is benzene, with a maximum contaminant level set by the Environmental Protection Agency (EPA) at five micrograms per liter in drinking water. Many VOCs are present at similar very low concentrations, so effective sensors must accurately measure and discriminate very small mass changes.

Weve been able to measure concentrations among the lowest levels that have been achieved using this type of resonant microsensor, noted Brand. While we have not achieved the required sensitivity yet, we are constantly making improvements.

Brand and Mizaikoff have tested their sensor device in the laboratory by pumping water with specific pollutant concentrations through a simple flow cell device attached to the sensor.

A typical test begins by flowing a water sample containing a known amount of pollutant over a sensor coated with a polymer membrane. When the sample flows through the cell, the mass of the microstructure increases, causing its characteristic vibration frequency, or resonance frequency, to decrease. By monitoring this resonance frequency over time, Brand and Mizaikoff can detect the amount of aromatic hydrocarbons such as benzene present in water.

The researchers plan to run field trials to investigate the use of this new microsensor in aqueous and gaseous environments for rapid on-site screening of multiple pollutants.

With benzene and other VOCs high on the EPA priority pollutant list, it would be a major advantage to get a rapid reading of VOC concentrations directly in the field, said Mizaikoff.


Contact: John Toon
Georgia Institute of Technology Research News

Related biology news :

1. Researchers propose measures to curb lion attacks in Tanzania
2. DNA technique measures suitability of soil for onion crops
3. Scientist measures role of sciences coolest player: The snow
4. Control measures fail to stop spread of new H5N1 virus
5. Breakthrough: Scientists create worlds tiniest organic particles
6. Organic farms produce same yields as conventional farms
7. New organic substrate
8. Most widely used organic pesticide requires help to kill
9. Organic is healthier: Kiwis prove that green is good
10. First-ever Compounds To Target Only Metastatic Cells Are Highly Effective Against Breast, Prostate, And Colon Cancers
11. Researchers discover chemical compounds that affect plant growth
Post Your Comments:
(Date:11/18/2015)... new scientific discoveries deepen our understanding of how cancer ... challenges in better using that knowledge to guide treatment ... children continue to survive pediatric cancer, that counseling may ... John M. Maris, M.D ., a pediatric oncologist ... --> John M. Maris, M.D ., ...
(Date:11/17/2015)... EASTON, Mass. , Nov. 17, 2015 ... a leader in the development and sale of broadly ... the worldwide life sciences industry, today announced it has ... of its $5 million Private Placement (the "Offering"), increasing ... to $4,025,000.  One or more additional closings are expected ...
(Date:11/11/2015)... --  MedNet Solutions , an innovative SaaS-based eClinical technology company ... to announce that it will be a Sponsor of the ... be held November 17-19 in Hamburg , ... iMedNet , MedNet,s easy-to-use, proven and affordable ... been able to deliver time and cost savings of up ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 24, 2015 Cepheid (NASDAQ: CPHD ) ... the following conference, and invited investors to participate via ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern ... New York, NY      Tuesday, December 1, ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) ... of the Toronto Stock Exchange, confirms that as of ... corporate developments that would cause the recent movements in ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged ...
(Date:11/24/2015)... November 24, 2015 SHPG ) announced today ... the Piper Jaffray 27 th Annual Healthcare Conference in ... 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ... Officer, will participate in the Piper Jaffray 27 th Annual ... on Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. ...
(Date:11/24/2015)... Urdorf, Switzerland (PRWEB) , ... November 24, 2015 ... ... the plant and the environment are paramount. Insertion points for in-line sensors can ... TOLEDO has developed the InTrac 781/784 series of retractable sensor housings , ...
Breaking Biology Technology: