Navigation Links
New method to diagnose sepsis is faster, cheaper
Date:11/18/2013

WASHINGTON, DC November 15, 2013 A new method could cut hours off the time it takes to diagnose blood infections while also eliminating the need for complicated manual processing and expensive equipment, according to a report to be published in mBio, the online open-access journal of the American Society for Microbiology, on November 19. The method combines a selective lysis step in which blood cells in the sample are destroyed, a centrifugation step to collect any bacteria or fungi in the sample, and a fluorescence step that analyzes the particular fingerprint of any pathogens present in the sample. Tests show the method correctly identifies the species of bacteria or fungi in 96.5 % of positive blood culture samples, crucial information for doctors to provide the appropriate drugs for their patients.

"The primary benefit of getting a rapid identification is making sure the patient is on the right [antibiotic] therapy and to quickly make any needed adjustments to the initial therapy," says co-author John Walsh of bioMrieux, Inc. in Durham, North Carolina. Patients with bloodstream infections are usually in very serious condition, says Walsh, and faster identification of the organism causing the infection can help get patients on the most effective antibiotics faster and save lives. Proper diagnosis is also important from the perspective of antibiotic stewardship: using more appropriate, targeted antibiotics reduces the risk of contributing to the spread of resistance to broad-spectrum antibiotics.

Walsh says the current standard approach to diagnosing bloodstream infections, Gram staining and overnight sub-culture followed by phenotypic ID tests, have limitations that can prevent timely treatment. Gram staining provides early, low level information about the type of microorganism present, but it sometimes takes hours to deliver a result, and technicians can make mistakes in the process that provide misleading results. Other more specific identification methods are also available for diagnosis, but they can take at least a day or two to produce results and many require expensive equipment.

In the technique developed by Walsh et al., a sample of positive blood culture is treated with lysis buffer to "pop" the blood cells, then transferred to a specialized optical tube. The tube is centrifuged, which drives bacteria or fungi, which are denser than the solution, down through a liquid density cushion to form a pellet at the bottom of the tube.

Then comes the intrinsic fluorescence spectroscopy (IFS): the microbial pellet is irradiated with light ranging from the deep ultraviolet to infrared, which excites certain organic molecules in the microorganisms, including tryptophan, NADH, FAD, porphyrins, and others, and causes them to fluoresce in a characteristic way depending on the identity of the microbe. The exact pattern of fluorescence is compared with a database of 37 of the most common known pathogens to identify the organism present.

"We're using intrinsic fluorescence to identify the microorganisms. It's an innate property of most living organisms. Because it's intrinsic, no reagents are needed for the identification step," which removes many of the opportunities for mistakes and lowers test costs, says Walsh.

Testing in a controlled laboratory study shows the method can correctly identify the species in 96.5% of all test samples, and in the 2.7% of samples for which no species identity was provided, the system was able to correctly identify 67% to the family level, which is often enough information to select an effective therapy. Among over a thousand samples tested, the method never gave an incorrect result as to the family level or the Gram type.

Walsh says the research and development team in Durham is actively working on automating the system with robotics to make it a fully hands-off process. Blood cultures grow in their own time, often producing a positive result at an inconvenient time of the day for clinical labs, he points out, so automation could speed up diagnosis significantly.

"Our vision is to have a system that will automatically identify the blood culture isolate within 15 minutes of the culture being called positive," says Walsh. If a culture is positive at 2 AM, he says, automating this method could make it possible to identify the organism by 2:15 AM and send an electronic report to a patient's physician. They hope be begin testing and evaluating the feasibility of an automated form of the system in a clinical environment within months.

Rapid ID Procedure: An overall schematic of the simple three-step process (lyse-spin-read) is given in Figures 1a-c. Briefly, a 2.0 mL sample of warm (35-37oC) positive broth is removed from the test blood culture bottle and added to 1.0 mL of warm (35-37oC) selective lysis buffer (0.45% w/v Brij-O10 in 0.3M CAPS, pH 11.7), contained in a 15 mL screw capped polypropylene tube. The mixture was vortexed for 5 seconds at maximum speed and then placed in a 35-37oC waterbath for 60 seconds. After an additional 1-2 second vortex, 1.0 mL of the lysate was removed and layered onto a single 5/16 inch diameter polypropylene ball (CIC Ball Co.) floating on the surface of 0.5 mL of a solution of 24% w/v cesium chloride + 0.005% w/v Pluronic F-108 + 10 mM HEPES, pH 7.4 contained within an optical micro-centrifuge tube. The polypropylene ball was used to control the layering process and create an undisturbed interface. The tube was sealed with a screw-cap and centrifuged for 2 minutes at 10,000 rpm at 20-25oC in a microcentrifuge with A-8-11 swing-out rotor.


'/>"/>

Contact: Garth Hogan
ghogan@asmusa.org
American Society for Microbiology
Source:Eurekalert  

Related biology news :

1. Rice University method gives accurate picture of gas storage by microscopic cages
2. MU study finds more accurate method to diagnose pancreatic cancer
3. New methods improve quagga and zebra mussel identification
4. Laser technology sorting method can improve Capsicum pepper seed quality
5. Researchers develop rapid, cost-effective early detection method for organ transplant injury
6. Scientists develop method that ensures safe research on deadly flu viruses
7. UTSA, Southwest Research Institute to develop low-cost method to treat fracking water
8. New methods to visualize bacterial cell-to-cell communication
9. Low-cost sterilization method for cats and dogs is focus of new research project
10. Memorial Sloan-Kettering researchers develop new method for tracking cell signaling
11. Researchers create method to rapidly identify specific strains of illness
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New method to diagnose sepsis is faster, cheaper
(Date:5/16/2017)... , May 16, 2017  Veratad Technologies, LLC ( ... online age and identity verification solutions, announced today they ... Conference 2017, May 15 thru May 17, 2017, in ... and International Trade Center. Identity impacts ... and in today,s quickly evolving digital world, defining identity ...
(Date:4/18/2017)... 18, 2017  Socionext Inc., a global expert in SoC-based imaging ... server, the M820, which features the company,s hybrid codec technology. A ... Tera Probe, Inc., will be showcased during the upcoming Medtec Japan ... at the Las Vegas Convention Center April ... Click here for ...
(Date:4/11/2017)... -- Research and Markets has announced the addition of ... offering. ... market to grow at a CAGR of 30.37% during the period ... has been prepared based on an in-depth market analysis with inputs ... growth prospects over the coming years. The report also includes a ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
(Date:10/9/2017)... ... 09, 2017 , ... The Giving Tree Wellness Center announces ... needs of consumers who are incorporating medical marijuana into their wellness and health ... As operators of two successful Valley dispensaries, The Giving Tree’s two founders, Lilach ...
(Date:10/7/2017)... , ... October 06, 2017 ... ... in Hi-C-based genomic technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution product, featuring ... kit and accompanying cloud-based bioinformatics software to perform Hi-C metagenome deconvolution using ...
(Date:10/6/2017)... ... October 06, 2017 , ... On ... and webinar on INSIGhT, the first-ever adaptive clinical trial for glioblastoma (GBM). The ... The event is free and open to the public, but registration is required. ...
Breaking Biology Technology: