Navigation Links
New method separates cancer cells from normal cells

The vast majority of cancer deaths are due to metastasis, the spread of cancer cells from its primary site to other parts of the body. These metastatic cells tend to move more than their non-metastatic variants but this movement is poorly understood. Scientists are studying cancer cells intently with the hope they can learn to control the movements of the dangerous cells.

Northwestern University researchers now have demonstrated a novel and simple method that can direct and separate cancer cells from normal cells. Based on this method, they have proposed that cancer cells possibly could be sequestered permanently in a sort of "cancer trap" made of implantable and biodegradable materials.

The demonstrated device, which takes advantage of a physical principle called ratcheting, is a very tiny system of channels for cell locomotion. Each channel is less than a tenth of a millimeter wide. The asymmetric obstacles inside these channels direct cell movement along a preferred direction.

Details are published online by the journal Nature Physics.

"We have demonstrated a principle that offers an unconventional way to fight metastasis, a very different approach from other methods, such as chemotherapy," said Bartosz Grzybowski, the paper's senior author. "These are fundamental studies so the method needs to be optimized, but the idea has promise for a new approach to cancer therapy."

Grzybowski is associate professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science and associate professor of chemistry in the Weinberg College of Arts and Sciences.

The researchers first discovered they could design channels of different geometries -- some a series of connected triangles -- through which cells can move in a single direction. (Live mammalian melanoma, breast cancer and normal cells were studied.)

To create the channels, the researchers patterned cell-adhesive and cell-repellant chemical compounds onto a substrate. The cells stayed out of the repellant areas and localized onto the "ratchet" channels, which then directed the cells' movements.

Grzybowski and his colleagues took this knowledge one critical step farther: they designed channels that successfully moved the cells of two types -- notably, cancerous and non-cancerous -- in opposite directions and thus partly sorted them out.

To sort the cells, they took advantage of the cells' different shapes and mobility characteristics. Migrating cancer cells tend to be more round and broad while normal, epithelial cells are long and thin with long protrusions on the ends. The researchers designed a channel with "spikes" coming out at 45-degree angles from the walls, alternating on opposite sides of the channel. This pattern funnels cancer cells in one direction while at the same time directing the normal cells in the opposite direction, as those cells "grab" the spikes and pull themselves through.

The researchers showed that a device with a number of these channels leading to a central reservoir, like spokes on a wheel, worked just as well separating cancer and non-cancerous cells. A stack of these radially arranged ratchet channels could be used to create a "cancer trap."

"When implanted next to a tumor the particles would guide cancer cells, but not normal cells, inward to the reservoir, where they would be trapped," said Grzybowski. "The particles could also be part of the sutures used during surgical procedures."


Contact: Megan Fellman
Northwestern University

Related biology news :

1. K-State host to workshop on rapid methods to detect microorganisms in food
2. Scholar unconvinced new lie-detection methods better than old ones
3. Protein analysis methods, viral vectors featured in Cold Spring Harbor Protocols
4. New method developed by UC San Diego bioengineers gives regenerative medicine a boost
5. Cold and brown fat raise the prospect of a new method of treating obesity
6. New method for detection of phosphoproteins reveals regulator of melanoma invasion
7. Scientists develop method for comprehensive proteome analysis
8. Engineers develop method to disperse chemically modified graphene in organic solvents
9. Pilot study shows effectiveness of new, low-cost method for monitoring hand hygiene compliance
10. New method for detecting explosives
11. Genomatix gets patent for comparative genomics method
Post Your Comments:
(Date:10/29/2015)... , Oct. 29, 2015 Today, ... announced a partnership with 2XU, a global leader ... deliver a smart hat with advanced bio-sensing technology. ... other athletes to monitor key biometrics to improve ... strategic partnership, the two companies will bring together the ...
(Date:10/27/2015)... 2015 Munich, Germany ... technology (ASGM) automatically maps data from mobile eye tracking ... , so that they can be quantitatively analyzed with ... Munich, Germany , October 28-29, 2015. SMI,s Automated ... mobile eye tracking videos created with SMI,s Eye ...
(Date:10/26/2015)... , October 26, 2015 ... --> adds Biometrics Market ... 2021 as well as Emerging Biometrics ... reports to its collection of IT ... . --> ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: PIP) ... a stockholder rights plan (Rights Plan) in an effort ... carryforwards (NOLs) under Section 382 of the Internal Revenue ... PharmAthene,s use of its NOLs could be substantially ... defined in Section 382 of the Code. In general, ...
(Date:11/25/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS; TSX: AEZ) ... remain fundamentally strong and highlights the following developments: ... DSMB recommendation to continue the ZoptEC Phase 3 ... final interim efficacy and safety data , ... with heavily pretreated castration- and Taxane-resistant prostate cancer ...
(Date:11/24/2015)... 24, 2015  Asia-Pacific (APAC) holds the third-largest ... market. The trend of outsourcing to low-cost locations ... higher volume share for the region in the ... margins in the CRO industry will improve. ... ( ), finds that the market earned ...
(Date:11/24/2015)... ... 2015 , ... Copper is an essential micronutrient that all ... copper is also toxic to cells. With a $1.3 million award from the ... a systematic study of copper in the bacteria Pseudomonas aeruginosa (P. aeruginosa), a ...
Breaking Biology Technology: