Navigation Links
New method monitors early sign of oxidative stress in cancer
Date:9/11/2009

ANN ARBOR, Mich.---The growth of cancerous tumors is fueled, at least in part, by the buildup of free radicals---highly reactive oxygen-containing molecules.

It stands to reason, then, that cancer should respond to treatment with antioxidants, which inhibit the rogue radicals, or with pro-oxidants, which go the opposite direction, increasing "oxidative stress" on cancer cells to the point of vanquishing them.

But experiments with such treatments have had mixed results, possibly because patients differ in their "redox profiles," or oxidative stress levels. Being able to monitor a marker of oxidative stress that is associated with the activation of tumor cell growth pathways, particularly at an early stage, and then tailor treatments accordingly would allow for more targeted studies and might improve the odds of success with antioxidants and pro-oxidants, said University of Michigan chemical biologist Kate Carroll.

A new method developed by Carroll and postdoctoral research fellow Young Ho Seo makes such monitoring possible and reveals that different individuals and even different tumor types have different redox profiles. The method and the research behind it are described in a paper scheduled for online publication in the Proceedings of the National Academy of Sciences during the week of Sept. 7.

The new method detects sulfenic acid in proteins---a tipoff to early oxidative stress and to a specific protein modification associated with cell growth pathways. Sulfenic acid is produced when a particular oxidant, hydrogen peroxide, reacts with the protein building block cysteine. But because the chemical modification involved is so small and transient, it has been difficult to detect. To get around that problem, Carroll and Seo used a chemical probe that "traps" sulfenic acid and tags it for recognition by an antibody. The antibody is labeled with a fluorescent dye that glows when observed with a fluorescence microscope.

The researchers then used the method to assess sulfenic acid levels as a marker of oxidative stress in several systems, including a panel of breast cancer cell lines.

"For each line, we saw a very distinct pattern of sulfenic acid modifications," indicating different oxidative stress levels and hinting at differences in the underlying molecular events associated with tumor growth," said Carroll, assistant professor of chemistry and a research assistant professor in the Life Sciences Institute. "Whether the patterns we see will correlate with response to antioxidant treatment or other therapies that modulate oxidative stress level remains to be seen, but now we at least have a way to investigate that question."

Next, Carroll's group wants to determine which specific proteins in the cell are being modified and what roles, if any, those proteins play in the disease process. "Some of the modified proteins may not play any role, but I'm sure it will turn out that many of them do," Carroll said. "Once we find out which proteins are involved, we can target them directly rather than using global treatments like antioxidants."

The U-M Office of Technology Transfer is working on commercialization of the technology. Patent protection has been applied for, and the compounds used in this research soon will be commercially available.


'/>"/>

Contact: Nancy Ross-Flanigan
rossflan@umich.edu
734-647-1853
University of Michigan
Source:Eurekalert

Related biology news :

1. Prototype NIST method detects and measures elusive hazards
2. Researcher says microchannels could advance tissue engineering methods
3. Carnegie Mellon develops innovative method to detect genetic causes of complex diseases
4. Methods for gene transfer in stem cells featured in Cold Spring Harbor Protocols
5. Researchers develop brain-reading methods
6. NTU professor discovers method to efficiently produce less toxic drugs using organic molecules
7. New biomarker method could increase the number of diagnostic tests for cancer
8. Energy-saving method checks refrigerant level in air conditioners
9. Improved method developed to test carcinogen risk
10. Infant formula adulteration with melamine underscores need for better detection methods
11. UBC researchers develop new method to study gambling addictions
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/16/2017)... CeBIT 2017 - Against identity fraud with DERMALOG solutions "Made in ... ... combined in one project, multi-biometric solutions provide a crucial contribution against identity fraud. (PRNewsFoto/Dermalog Identification ... Used combined in one project, multi-biometric solutions provide a ... ...
(Date:3/9/2017)... March 9, 2017 4Dx has publicly released ... Imaging Workshop at the University of Pennsylvania. Founder and ... deliver the latest data to world leaders in lung ... together leaders at the forefront of the industry to ... "The quality of the imaging is ...
(Date:3/7/2017)... Brandwatch , the leading social intelligence company, today ... to uncover insights to support its reporting, help direct future ... UK,s leading youth charity will be using Brandwatch Analytics social listening ... better understanding of the topics and issues that are a priority ... ...
Breaking Biology News(10 mins):
(Date:3/24/2017)... Biotech Ltd. ("Sinovac" or the "Company") (NASDAQ: SVA), a leading provider ... that its board of directors has amended its shareholder rights plan. The ... 2017 to March 27, 2018. The amendment was not in response to ... ... Ltd. is a China -based biopharmaceutical company that ...
(Date:3/23/2017)... ... March 23, 2017 , ... AxioMed president, Jake Lubinski, ... elastic characteristics when deformed, which is identical to how the human discs work ... forces and return to its natural state along a hysteresis curve, exactly like ...
(Date:3/23/2017)... MILFORD, Mass. , March 23, 2017 ... leading partner to global in vitro diagnostics ... launch of the industry,s first multiplexed ... inherited disease testing by next-generation sequencing ... materials were developed with input from industry ...
(Date:3/23/2017)... March 23, 2017 Kineta, Inc., a ... novel therapies in immuno-oncology, today announced the discovery ... molecule compounds that activate interferon response factor 3 ... demonstrate immune-mediated tumor regression in a murine colon ... who demonstrated complete tumor regression to initial drug ...
Breaking Biology Technology: