Navigation Links
New method for stabilizing hemoglobin could lead to stable vaccines, artificial blood
Date:12/3/2013

A UConn research team has found a way to stabilize hemoglobin, the oxygen carrier protein in the blood, a discovery that could lead to the development of stable vaccines and affordable artificial blood substitutes.

The team's novel approach involves wrapping the polymer poly(acrylic acid) around hemoglobin, protecting it from the intense heat used in sterilization and allowing it to maintain its biological function and structural integrity.

In addition to having potential applications in the stabilization of vaccines and development of inexpensive artificial blood, the stabilizing polymer also allows vaccines and other biomedical products to be stored for longer periods without refrigeration. It could also have applications in biomaterials, biosensors and biofuels.

"Protein stability is a major issue in biotechnology," says Challa V. Kumar, UConn professor of chemistry and biochemistry and the primary investigator on the project. "What we've done is taken this protein molecule and wrapped it up in a polymer chain in order to stabilize it. In thermodynamics terms, we have restricted the entropy of the denatured state of the protein and stabilized it beyond our expectations. The system also exhibits a high degree of reversibility. The protein can be denatured and renatured many, many times. This is the very first example of its kind in the literature of all protein science. No one has ever been able to achieve this kind of stability for proteins."

A popular example of denaturation can be found in the protein present in eggs. As the egg is cooked and the protein around the yolk turns white, the protein in the egg is denatured and cannot return to its prior, natural state. Likewise, when proteins in a living cell are exposed to heat they become denatured, which disrupts their activity and can lead to cell death. When protein is a critical element in a vaccine and breaks down, the product becomes useless.

In searching for a viable material to serve as a protein stabilizer, Kumar's team found one that is readily available, inexpensive and can be modified chemically for further improvements.

The poly(acrylic acid) used in the study is the same material found in disposable diapers and one of the most abundant synthetic polymers on the planet. This particular polymer, Professor Kumar says, is very hydrophilic, meaning it likes water. The polymer naturally binds to hemoglobin, creating a tight seal that protects the protein molecule and allows it to retain its structural integrity even after heating to 120˚C for extended periods of time (steam sterilization).

In a paper published last year in the Journal of Materials Chemistry, Kumar and his team showed how hemoglobin wrapped in low molecular weight poly(acrylic acid) formed nanoparticles that retained their natural state and structure, even after they were subjected to the harsh conditions of steam sterilization. Under the same conditions, hemoglobin samples that were not wrapped in the polymer lost the majority of their structure and function.

Kumar said these test results signaled the project's breakthrough moment.

As part of its research, the team chose to examine the feasibility of using hemoglobin as an artificial blood substitute. Hemoglobin, when extracted from blood, breaks down and is toxic in its pure form. Since hemoglobin is the critical oxygen carrier protein in blood, Kumar and his team are looking at ways of stabilizing hemoglobin in its natural form so that it retains its activity and stays harmless when administered as a transfusion agent. This could lead to a new substitute for human blood, which is frequently in short supply. Blood shortages are expected to get worse in coming years as more and more people in the world would need blood transfusions, Kumar said.

The research has caught the attention of scientists at Merck, a global leader in prescription medicine, vaccines, and biologic therapies.

"Being able to control the placement of proteins in polymer matrices of defined size brings exciting opportunities for producing potent and heat-stable vaccine antigens," says Henryk Mach, a senior investigator with Merck's vaccine drug product development division. "Prof. Kumar's work may well provide technologies for vaccine delivery in the developing world."

The abundance of the polymer, the flexibility of the process, and the simplicity of the approach enhances its potential for mass production, Kumar says. Kumar and the rest of the UConn research team are working with the Technology Partnerships and Licensing group of UConn's Office of Economic Development and a U.S. patent application has been filed for the new technology.


'/>"/>

Contact: Challa V. Kumar
challa.kumar@uconn.edu
860-486-3213
University of Connecticut
Source:Eurekalert  

Related biology news :

1. SU biologist develops method for monitoring shipping noise in dolphin habitat
2. UCSB biomedical scientist discovers a new method to increase survival in sepsis
3. New method to diagnose sepsis is faster, cheaper
4. Rice University method gives accurate picture of gas storage by microscopic cages
5. MU study finds more accurate method to diagnose pancreatic cancer
6. New methods improve quagga and zebra mussel identification
7. Laser technology sorting method can improve Capsicum pepper seed quality
8. Researchers develop rapid, cost-effective early detection method for organ transplant injury
9. Scientists develop method that ensures safe research on deadly flu viruses
10. UTSA, Southwest Research Institute to develop low-cost method to treat fracking water
11. New methods to visualize bacterial cell-to-cell communication
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New method for stabilizing hemoglobin could lead to stable vaccines, artificial blood
(Date:4/17/2017)... , April 17, 2017 NXT-ID, Inc. ... company, announces the filing of its 2016 Annual Report on Form ... Exchange Commission. ... Form 10-K is available in the Investor Relations section of the ... on the SEC,s website at http://www.sec.gov . 2016 ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, ... secure authentication solutions, today announced that it has ... Advanced Research Projects Activity (IARPA) to develop next-generation ... program. "Innovation has been a driving ... Thor program will allow us to innovate and ...
(Date:4/11/2017)... NXT-ID, Inc. (NASDAQ:   NXTD ) ("NXT-ID" or ... independent Directors Mr. Robin D. Richards and Mr. ... the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive Officer said," ... and benefiting from their considerable expertise as we move forward ...
Breaking Biology News(10 mins):
(Date:7/25/2017)... ... July 25, 2017 , ... ... of Strategic Planning. His extensive background in consulting, development and marketing make ... marketing and differentiation consulting, business strategy development, new product marketing and global ...
(Date:7/24/2017)... ... July 24, 2017 , ... ... announced that the stock market news outlet had initiated coverage on Interpace ... that screens and identifies exposure, progression and risk analysis from specific cancers ...
(Date:7/20/2017)... ... July 20, 2017 , ... VIC Technology Venture Development™ (VIC™), ... of directors. This addition continues to strengthen and diversify VIC’s board. , "We ... Chairman. “He is a highly accomplished business executive with a broad range of experience ...
(Date:7/18/2017)... ... July 18, 2017 , ... Nanomedical Diagnostics, a ... announces the launch of a new NTA biosensor chip for use with its ... the kinetics of polyhistidine-tagged (His-tagged) molecules quickly and reliably. , “Recombinant proteins ...
Breaking Biology Technology: