Navigation Links
New membrane strips carbon dioxide from natural gas faster and better
Date:10/11/2007

A modified plastic material greatly improves the ability to separate global warming-linked carbon dioxide from natural gas as the gas is prepared for use, according to engineers at The University of Texas at Austin who have analyzed the new plastics performance.

Like a sponge that only soaks up certain chemicals, the new plastic permits carbon dioxide or other small molecules to go through hour-glass shaped pores within it, while impeding natural gas (methane) movement through these same pores. The thermally rearranged (TR) plastic works four times better than conventional membranes at separating out carbon dioxide through pores.

Dr. Ho Bum Park, a postdoctoral student in the laboratory of Professor Benny Freeman, also found that TR plastic membranes act quicker. They permit carbon dioxide to move through them a few hundred times faster than conventional membranes do even as they prohibit natural gas and most other substances from traveling through their pores for separation purposes.

If this material was used instead of conventional cellulose acetate membranes, processing plants would require 500 times less space to process natural gas for use because of the membranes more efficient separation capabilities, and would lose less natural gas in their waste products, said Freeman, noting that, pound for pound, natural gas has a worse global warming impact on the atmosphere than carbon dioxide.

When developed for commercial use, the plastic could also be used to isolate natural gas from decomposing garbage, the focus of several experimental projects nationally. The TR plastic described in tomorrows issue of Science could also help recapture carbon dioxide being pumped into oil reservoirs in West Texas and elsewhere, where it serves as a tool for removing residual oil.

Freeman is a co-author on the Science article about the research. He holds the Kenneth A. Kobe Professorship and Paul D. and Betty Robertson Meek & American Petrofina Foundation Centennial Professorship of Chemical Engineering. Elizabeth Van Wagner, a graduate student in chemical engineering, also is a co-author in Austin.

Park, lead author of the article, initially engineered the membrane while at Hanyang University in Korea. As a research assistant in the lab of Professor Young Moo Lee, Park investigated whether plastics made of rings of carbon and certain other elements could work well at separating carbon dioxide out of gas wastes produced by power plants. Separating the greenhouse gas from other gases at power plants must occur at high temperatures, which usually destroy plastic membranes.

Lee and Park not only found that the TR plastic could handle temperatures above 600 degrees Fahrenheit, but that the heat transformed the material into the better performing membrane described in Science. That membrane breaks a performance barrier thought to affect all plastic membranes.

I didnt expect that the TR plastic would work better than any other plastic membranes because thermally stable plastics usually have very low gas transport rates through them, Park said. Everyone had thought the performance barrier for plastic membranes could not be surpassed.

Park joined Freemans laboratory in Austin because of the professors expertise in evaluating membranes. Park then verified that the TR plastic separated carbon dioxide and natural gas well. Natural gas that is transported in pipelines can only contain 2 percent carbon dioxide, yet often comes out of the ground with higher levels of the gas, requiring this separation step.

This membrane has enormous potential to transform natural gas processing plants, Freeman said, including offshore platforms, which are especially crunched for space.

To better understand how the plastic works, Dr. Anita Hill and her group at Australias national science agency analyzed the material using positron annihilation lifetime spectroscopy. The method used at the Commonwealth Scientific and Industrial Research Organization suggested the hour-glass shape of the pores within the plastic, which are much more consistent in size than in most plastics.

The pores appear and disappear depending on how often the chains of chemicals that make up the plastic move.

The plastic chains move, and as they do, they open up gaps that allow certain gas molecules to wiggle through the plastic, Freeman said.

Freeman and Park intend to learn more about how these mobile pores behave as they develop the TR plastic for commercial purposes.

Park said, These membranes also show the ability to transport ions since they are doped with acid molecules, and therefore could be developed as fuel cell membranes. However, a lot of research still needs to be done to understand gas and ion transport through these membranes.


'/>"/>

Contact: Barbra Rodriguez
brodriguez@mail.utexas.edu
512-471-7541
University of Texas at Austin
Source:Eurekalert

Related biology news :

1. Global analysis of membrane proteins
2. Cells direct membrane traffic by channel width
3. Membrane research opens window to benefits for plants, humans
4. Wrinkled membranes create novel drug-delivery system
5. Gatekeeping: Penn researchers find new way to open ion channels in cell membranes
6. With record resolution and sensitivity, tool images how life organizes in a cell membrane
7. Biologists prove critical step in membrane fusion
8. Simulations unravel outer membrane transport mechanism
9. Carnegie Mellon scientists find key HIV protein makes cell membranes bend more easily
10. Deep sea algae connect ancient climate, carbon dioxide and vegetation
11. Storing carbon to combat global warming may cause other environmental problems, study suggests
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/16/2016)... 16, 2016 The global ... to reach USD 1.83 billion by 2024, according ... Inc. Technological proliferation and increasing demand in commercial ... to drive the market growth.      ... The development of advanced multimodal techniques for biometric ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. ... a business relationship that includes integrating Syngrafii,s patented ... branch project. This collaboration will result in greater ... the credit union, while maintaining existing document workflow ... http://photos.prnewswire.com/prnh/20160606/375871LOGO ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, ... Infrastructure, Support & Other Service  The latest ... comprehensive analysis of the global Border Security market ... of $17.98 billion in 2016. Now: In ... in software and hardware technologies for advanced video surveillance. ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Global demand for enzymes ... through 2020 to $7.2 billion.  This market includes ... cleaning products, biofuel production, animal feed, and other ... and biocatalysts). Food and beverages will remain the ... increasing consumption of products containing enzymes in developing ...
(Date:6/27/2016)... CA (PRWEB) , ... June 27, 2016 , ... ... for clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT ... care circle with the physician and clinical trial team. , Using the CONSULT module, ...
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Researchers at ... most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the ... read it now. , Diagnostic biomarkers are signposts in the blood, lung fluid ...
Breaking Biology Technology: