Navigation Links
New material mimics bone to create better biomedical implants
Date:2/16/2010

A "metal foam" that has a similar elasticity to bone could mean a new generation of biomedical implants that would avoid bone rejection that often results from more rigid implant materials, such as titanium. Researchers at North Carolina State University have developed the metal foam, which is even lighter than solid aluminum and can be made of 100 percent steel or a combination of steel and aluminum.

In a new paper, researchers have reported recent findings that, in addition to the extraordinary high-energy absorption capability and light weight of their novel composite foams, the "modulus of elasticity" of the foam is very similar to that of bone. Modulus of elasticity measures a material's ability to deform when pressure is applied and then return to its original shape when pressure is removed. The rough surface of the foam would also foster bone growth into the implant, improving the strength of implant.

Modulus of elasticity, which is measured in gigapascals (GPa), is extremely important for biomedical implants, explains Dr. Afsaneh Rabiei, an associate professor of mechanical and aerospace engineering and an associate faculty member of biomedical engineering at NC State and co-author of the paper.

"When an orthopedic or dental implant is placed in the body to replace a bone or a part of a bone, it needs to handle the loads in the same way as its surrounding bone," Rabiei says. "If the modulus of elasticity of the implant is too much bigger than the bone, the implant will take over the load bearing and the surrounding bone will start to die. This will cause the loosening of the implant and eventually ends in failure. This is known as "'stress shielding.'" When this happens, the patient will need a revision surgery to replace the implant. Our composite foam can be a perfect match as an implant to prevent stress shielding," Rabiei explains.

To give an idea of the difference between the modulus of elasticity of bone and that of traditional implants, bone has a modulus of between 10 and 30 GPa while titanium has a modulus of approximately 100 GPa. The new composite foam has a modulus that is consistent with bone, and is also relatively light because it is porous.

The rough surface of the metal foam, Rabiei says, "will bond well with the new bone formed around it and let the body build inside its surface porosities. This will increase the mechanical stability and strength of the implant inside the body."


'/>"/>

Contact: Matt Shipman
matt_shipman@ncsu.edu
919-515-6386
North Carolina State University
Source:Eurekalert  

Related biology news :

1. Keck Foundation funds study of biological interactions with nanomaterials
2. New Delft material concept for aircraft wings could save billions
3. Scientists discover record-breaking hydrogen storage materials for use in fuel cells
4. Purdue researchers obtain a snapshot clarifying how materials enter cells
5. Ecologists, material scientists pursue genetics of diatoms elegant, etched casing
6. Genetic material under a magnifying glass
7. Material Technologies Holds First Electrochemical Fatigue Sensor Training for Private Inspection Firms
8. Sea cliff erosion, hemp construction materials and more at UCSD Engineering Conference
9. Lensless camera uses X-rays to view nanoscale materials and biological specimens
10. Creation of a new material capable of eliminating pollutants by the hydrocarbon industry
11. Scientists find that squid beak is both hard and soft, a material that engineers want to copy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New material mimics bone to create better biomedical implants
(Date:6/9/2016)... ISTANBUL , June 9, 2016  Perkotek an innovation leader in attendance control ... to seamlessly log work hours, for employers to make sure the right employees are ... Logo - http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/2/2016)... 2016 The Department of Transport Management ... 44 million US Dollar project, for the , ... Personalization, Enrolment, and IT Infrastructure , to ... and implementation of Identity Management Solutions. Numerous renowned international vendors ... Decatur was selected for the most compliant and ...
(Date:5/24/2016)... 2016 Ampronix facilitates superior patient care by providing unparalleled technology to leaders ... is the latest premium product recently added to the range of products distributed by ... ... ... LCD Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking software company, ... Crime Laboratory, has joined STACS DNA as a Field Application Specialist. , “I ... President and COO of STACS DNA. “In further expanding our capacity as a scientific ...
(Date:6/23/2016)... June 23, 2016 Apellis Pharmaceuticals, Inc. ... clinical trials of its complement C3 inhibitor, APL-2. ... multiple ascending dose studies designed to assess the ... subcutaneous injection in healthy adult volunteers. ... as a single dose (ranging from 45 to ...
(Date:6/23/2016)... 2016 Andrew D ... http://doi.org/10.17925/OHR.2016.12.01.22 Published recently in ... from touchONCOLOGY, Andrew D Zelenetz , discusses ... care is placing an increasing burden on healthcare ... therapies. With the patents on many biologics expiring, ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only free validated ... will showcase its product’s latest features from June 26 to June 30, 2016 ... on Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug ...
Breaking Biology Technology: