Navigation Links
New material mimics bone to create better biomedical implants
Date:2/16/2010

A "metal foam" that has a similar elasticity to bone could mean a new generation of biomedical implants that would avoid bone rejection that often results from more rigid implant materials, such as titanium. Researchers at North Carolina State University have developed the metal foam, which is even lighter than solid aluminum and can be made of 100 percent steel or a combination of steel and aluminum.

In a new paper, researchers have reported recent findings that, in addition to the extraordinary high-energy absorption capability and light weight of their novel composite foams, the "modulus of elasticity" of the foam is very similar to that of bone. Modulus of elasticity measures a material's ability to deform when pressure is applied and then return to its original shape when pressure is removed. The rough surface of the foam would also foster bone growth into the implant, improving the strength of implant.

Modulus of elasticity, which is measured in gigapascals (GPa), is extremely important for biomedical implants, explains Dr. Afsaneh Rabiei, an associate professor of mechanical and aerospace engineering and an associate faculty member of biomedical engineering at NC State and co-author of the paper.

"When an orthopedic or dental implant is placed in the body to replace a bone or a part of a bone, it needs to handle the loads in the same way as its surrounding bone," Rabiei says. "If the modulus of elasticity of the implant is too much bigger than the bone, the implant will take over the load bearing and the surrounding bone will start to die. This will cause the loosening of the implant and eventually ends in failure. This is known as "'stress shielding.'" When this happens, the patient will need a revision surgery to replace the implant. Our composite foam can be a perfect match as an implant to prevent stress shielding," Rabiei explains.

To give an idea of the difference between the modulus of elasticity of bone and that of traditional implants, bone has a modulus of between 10 and 30 GPa while titanium has a modulus of approximately 100 GPa. The new composite foam has a modulus that is consistent with bone, and is also relatively light because it is porous.

The rough surface of the metal foam, Rabiei says, "will bond well with the new bone formed around it and let the body build inside its surface porosities. This will increase the mechanical stability and strength of the implant inside the body."


'/>"/>

Contact: Matt Shipman
matt_shipman@ncsu.edu
919-515-6386
North Carolina State University
Source:Eurekalert  

Related biology news :

1. Keck Foundation funds study of biological interactions with nanomaterials
2. New Delft material concept for aircraft wings could save billions
3. Scientists discover record-breaking hydrogen storage materials for use in fuel cells
4. Purdue researchers obtain a snapshot clarifying how materials enter cells
5. Ecologists, material scientists pursue genetics of diatoms elegant, etched casing
6. Genetic material under a magnifying glass
7. Material Technologies Holds First Electrochemical Fatigue Sensor Training for Private Inspection Firms
8. Sea cliff erosion, hemp construction materials and more at UCSD Engineering Conference
9. Lensless camera uses X-rays to view nanoscale materials and biological specimens
10. Creation of a new material capable of eliminating pollutants by the hydrocarbon industry
11. Scientists find that squid beak is both hard and soft, a material that engineers want to copy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New material mimics bone to create better biomedical implants
(Date:4/11/2017)... , April 11, 2017 NXT-ID, ... security technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate ... ... NXT-ID, we look forward to their guidance and benefiting from ...
(Date:4/5/2017)... , April 5, 2017 Today ... announcing that the server component of the HYPR platform ... for providing the end-to-end security architecture that empowers biometric ... HYPR has already secured over 15 million users ... including manufacturers of connected home product suites and physical ...
(Date:4/3/2017)...  Data captured by IsoCode, IsoPlexis Corporation,s ... statistically significant association between the potency of ... objective response of cancer patients post-treatment. The ... cancer patients will respond to CAR-T cell ... to improve both pre-infusion potency testing and cell ...
Breaking Biology News(10 mins):
(Date:8/10/2017)... ... August 09, 2017 , ... SPIE, the ... laboratories — the Wellman Center for Photomedicine, the Manstein Lab in the Cutaneous ... Beckman Laser Institute at University of California, Irvine — and the Hillenkamp family ...
(Date:8/10/2017)... (PRWEB) , ... August 10, 2017 , ... ... the stock market news outlet had initiated coverage on Next Group Holdings, Inc. ... and underserved consumer markets geared toward those that cannot engage in traditional banking ...
(Date:8/8/2017)... ... August 08, 2017 , ... HumanZyme ... in human cells, today announced the launch of HumanKine® Interferon beta ... I family of interferons that activate Th1-type innate immune responses against viral and bacterial ...
(Date:8/8/2017)... ... 08, 2017 , ... Myoderm , a global clinical trial drug supply ... announcement comes on the heels of the opening of Myoderm’s European warehouse facility earlier ... to adding staff and establishing operations to support its customers around the world. ...
Breaking Biology Technology: