Navigation Links
New insights into DNA repair process may spur better cancer therapies
Date:9/30/2013

DURHAM, N.C. By detailing a process required for repairing DNA breakage, scientists at the Duke Cancer Institute have gained a better understanding of how cells deal with the barrage of damage that can contribute to cancer and other diseases.

The insights, reported online the week of Sept. 30, 2013, in the journal Proceedings of the National Academy of Sciences, build on earlier work by the research team and identify new prospects for developing cancer therapies.

The researchers have focused on a complex series of events that cells routinely undertake to repair DNA damaged by sun exposure, smoking and even normal metabolism. If not correctly repaired, DNA breakages can result in cellular damage leading to cancer.

"We never had good assays to measure how DNA breaks are repaired, and there were few good tools to study how that repair unfolds at the molecular level," said senior author Michael Kastan, M.D., PhD, executive director of the Duke Cancer Institute. "Our work for the first time enables us to both sensitively measure the repair of DNA breaks and study the molecular mechanisms by which they occur."

DNA inside the cell faces a challenge for repairing itself because it is so compacted in the cell nucleus. Tightly wrapped in a complex of proteins called chromatin, the DNA is spooled like thread around a protein structure called a nucleosome. DNA could suffer a breakage that would go unheeded if it remained deep within the reel.

The system developed by Kastan and colleagues induced DNA breakage at defined points on the DNA strands, enabling researchers to chronicle events as the cells launched the repair process.

What they described for the first time was a choreographed interaction in which the tightly wound DNA was temporarily loosened when a key protein, called nucleolin, was recruited to the breakage site, disrupting the nucleosome spool. The process was then reversed when the nucleosome was re-formed after repair was complete.

"Our study demonstrates for the first time the functional importance of nucleosome disruption in DNA repair," Kastan said. "This nucleosome disruption allows DNA repair proteins to access the DNA lesion and begin the process of mending the breakage."

Kastan said the finding provides key insights for how cells remain healthy, as well as how the repair process could potentially be manipulated. New cancer therapies, for instance, could target nucleolin to enhance sensitivity of tumor cells to radiation or chemotherapies, he said.

"This could give us an opportunity to make current treatments more potent," Kastan said. "That would be a next area of research, which we are especially interested in pursuing."


'/>"/>

Contact: Sarah Avery
sarah.avery@duke.edu
919-660-1306
Duke University Medical Center
Source:Eurekalert

Related biology news :

1. Erratic proteins: New insights into a transport mechanism
2. Eyewear Market 2014 Insights and System Refresher Report
3. Global analysis reveals new insights into the ribosome -- with important implications for disease
4. Potential diagnostic marker for zinc status offers insights into the effects of zinc deficiency
5. New insights into neuroblastoma tumor suppressor may provide clues for improved treatment
6. UCLA life scientists present new insights on climate change and species interactions
7. Insights into deadly coral bleaching could help preserve reefs
8. New insights into how genes turn on and off
9. New insights into the development of the heart
10. Peach genome offers insights into breeding strategies for biofuels crops
11. Novel insights into the evolution of protein networks
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:4/14/2016)... BioCatch ™, the global ... the appointment of Eyal Goldwerger as CEO. ... Goldwerger,s leadership appointment comes at a time of significant ... of its platform at several of the world,s largest ... unique cognitive and physiological factors, is a winner of ...
(Date:3/31/2016)... RATON, Florida , March 31, 2016 ... LEGX ) ("LegacyXChange" or the "Company") ... for potential users of its soon to be launched ... video ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide ... the use of DNA technology to an industry that ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016   Ginkgo Bioworks , ... industrial engineering, was today awarded as one of ... of the world,s most innovative companies. Ginkgo Bioworks ... for the real world in the nutrition, health ... work directly with customers including Fortune 500 companies ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica ... in people with peritoneal or pleural mesothelioma. Their findings are the subject of a ... , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue of ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one of the ... brand, UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing ... to its list of well-respected retailers. This list includes such fine stores as ...
Breaking Biology Technology: