Navigation Links
New insight on vulnerability of public-supply wells to contamination
Date:8/5/2013

Key factors have been identified that help determine the vulnerability of public-supply wells to contamination. A new USGS report describes these factors, providing insight into which contaminants in an aquifer might reach a well and when, how and at what concentration they might arrive.

About one-third of the U.S. population gets their drinking water from public-supply wells.

"Improving the understanding of the vulnerability of public-supply wells to contamination is needed to safeguard public health and prevent future contamination," said Suzette Kimball, acting USGS Director. "By examining ten different aquifers across the nation, we have a more thorough and robust understanding of the complexities and factors affecting water quality in our public supplies."

The study explored factors affecting public-supply-well vulnerability to contamination in ten study areas across the Nation. The study areas include Modesto, Calif., Woodbury, Conn., near Tampa, Fla., York, Nebr., near Carson City and Sparks, Nev., Glassboro, N. J., Albuquerque, N. Mex., Dayton, Ohio, San Antonio, Tex., and Salt Lake City, Utah.

Measures that are crucial for understanding public-supply-well vulnerability include: 1) the sources of the water and contaminants in the water that infiltrate the ground and are drawn into a well; 2) the geochemical conditions encountered by the groundwater; and 3) the range of ages of the groundwater that enters a well.

"Common sense might say that wells located near known contaminant sources would be the most vulnerable, but this study found that even where contaminant sources are similar, there are differences in public-supply-well vulnerability to contamination," said Sandra Eberts, the study team leader.

The study found that conditions in some aquifers enable contaminants to remain in the groundwater longer or travel more rapidly to wells than conditions in other aquifers. Direct pathways, such as fractures in rock aquifers or wellbores of non-pumping wells, frequently affect groundwater and contaminant movement, making it difficult to identify which areas at land surface are the most important to protect from contamination. An unexpected finding is that human-induced changes in recharge and groundwater flow caused by irrigation and high-volume pumping for public supply changed aquifer geochemical conditions in numerous study areas. Changes in geochemical conditions often release naturally occurring drinking-water contaminants such as arsenic and uranium into the groundwater, increasing concentrations in public-supply wells.

Knowledge of how human activities change aquifer conditions that control which contaminants are released to groundwater and how persistent those contaminants are once in the groundwater can be used by water managers to anticipate future water quality and associated treatment costs.

The quality of drinking water from the Nation's public water systems is regulated by the U.S. Environmental Protection Agency under the Safe Drinking Water Act. The USGS studies are intended to complement drinking water monitoring required by federal, state and local programs.


'/>"/>

Contact: Sandra Eberts
smeberts@usgs.gov
614-430-7740
United States Geological Survey
Source:Eurekalert

Related biology news :

1. New insights into cloud formation
2. Research on flavanols and procyanidins provides new insights into how these phytonutrients may positively impact human health
3. New insight into mechanisms behind autoimmune diseases suggests a potential therapy
4. Discovery offers insight into treating viral stomach flu
5. Fine-scale analysis of the human brain yields insight into its distinctive composition
6. Chimpanzee ground nests offer new insight into our ancestors descent from the trees
7. Battle of the sexes offers evolutionary insights
8. Analysis of speed of Greenland glaciers gives new insight for rising sea level
9. Mice with big brains provide insight into brain regeneration and developmental disorders
10. Maps of Miscanthus genome offer insight into grass evolution
11. Songbirds learning hub in brain offers insight into motor control
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)... , April 3, 2017  Data captured ... engineering platform, detected a statistically significant association ... prior to treatment and objective response of ... potential to predict whether cancer patients will ... treatment, as well as to improve both pre-infusion ...
(Date:3/30/2017)... KONG , March 30, 2017 The ... a system for three-dimensional (3D) fingerprint identification by adopting ground breaking ... into a new realm of speed and accuracy for use in ... at an affordable cost. ... ...
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
Breaking Biology News(10 mins):
(Date:8/11/2017)... , ... August 11, 2017 , ... Algenist continues to ... formulation unlocking collagen like never before. , Collagen is the key structural element ... market with Liquid Collagen™, which include: , First to ...
(Date:8/10/2017)... ... August 09, 2017 , ... Teachers from three Philadelphia ... August 14th through the 16th, the University City Science Center will kick off ... 2016, provides Philadelphia-based middle school educators an opportunity for professional development related to ...
(Date:8/10/2017)... Bahama (PRWEB) , ... August 09, 2017 , ... Okyanos ... will take place at the Pelican Bay Hotel in Freeport, Grand Bahama on September ... pre-registration is required. , With oversight from the Ministry of Health’s National Stem ...
(Date:8/10/2017)... ... August 10, 2017 , ... ... establishing Kinokuniya Company Ltd. as its exclusive sales representative for SPIE Journals in ... for the SPIE Digital Library in Japan. , “We look forward to expanding ...
Breaking Biology Technology: