Navigation Links
New insight into the controls on a go-to enzyme
Date:11/19/2008

Scientists at St. Jude Children's Research Hospital have gained new insights into regulation of one of the body's enzyme workhorses called calpains.

As the cell's molecular overachievers, calpains function in many cellular processes, including the movement of cells in tissues, the death of damaged cells, insulin secretion, and brain cell and muscle function. The downside of this broad set of responsibilities is that defective or overactive calpains have been linked to an array of disorders, including a form of muscular dystrophy, Type 2 diabetes, gastric cancers, Alzheimer's and Parkinson's diseases, cataracts, and the death of both heart muscle in heart attacks and of brain tissue in stroke and traumatic brain injury.

"Our basic findings on calpain regulation could add useful pieces to the puzzles of these disorders and perhaps reveal targets for drugs to treat them," said Douglas Green, Ph.D., chair of the St. Jude Department of Immunology.

Calpains are triggered by calcium flowing into the cell. This process induces the enzyme to snip apart many target proteins, as part of the cell's regulatory machinery. However, such a critical enzyme needs ultra-precise control, which is the job of another protein called calpastatin. A central question has been how calpastatin is so exquisitely specific in attaching to calpain and inhibiting itessentially ignoring other highly similar enzymes in the cell.

In an article published in the November 20, 2008, issue of the journal Nature, Green and his colleagues report new information on the specificity of calpastatin.

"Previous studies on calpastatin had revealed how a few of the parts of the calpastatin molecule attach to calpain in the inhibition process," said Green, the report's senior author. "However, there was no overall picture of calpastatin that revealed how it was so precise in its attachment and potent in its function."

To obtain that overall picture, St. Jude researchers used the analytical technique of X-ray crystallography, with help from nuclear magnetic resonance (NMR) spectroscopy. In this widely used method of determining protein structure, researchers first crystallize a protein to be studied. Then, they direct X-rays through the crystal and deduce the protein structure from the diffraction pattern of those X-rays. To overcome the crystallization bottleneck, a lengthy and unpredictable variable in X-ray crystallography, the investigators used NMR spectroscopy to tailor the perfect enzyme-inhibitor complex.

Tudor Moldoveanu, Ph.D., a postdoctoral fellow in Green's laboratory, performed X-ray structural analysis on such a protein crystal that consisted of a critical part of the calpastatin molecule attached to calpain. The structural picture obtained of the two proteins clutched together clearly revealed why calpastatin so specifically attaches to calpain.

"Calpain has multiple domains, and what we saw was that calpastatin wraps itself around pretty much every domain of calpain," said Moldoveanu, the report's first author. This attachment not only blocks the portion of the enzyme called the active site, where calpain performs its snipping function, but also covers regions away from that site. Such a broad molecular embrace guarantees that calpastatin will potently and rapidly shut down calpain's function, Moldoveanu said. This broad embrace also guarantees that calpastatin will precisely recognize only calpains, rather than mistakenly attach to other similar enzymes in the cell.

Furthermore, the researchers discovered how calpastatin evades being chewed up by calpain. Calpastatin's survival enables it to be repeatedly recycled to inhibit calpain, making it an even more effective regulator.

The researchers' structural information also showed how calpain changes its shape once it is activated by calcium and how this transformation renders it a target of calpastatin attachment and thus inhibition.

"This new structural information on calpastatin and on calpain's conformational changes not only explains a lot about calpain's regulation," Green said. "It also gives us information we can use to develop targets for drugs that could either activate or inhibit calpain."


'/>"/>

Contact: Summer Freeman
summer.freeman@stjude.org
901-595-3061
St. Jude Children's Research Hospital
Source:Eurekalert

Related biology news :

1. New molecular insight into vertebrate brain development
2. Study provides insight on a common heart rhythm disorder
3. Insight into the evolution of parasitism
4. St. Jude study gives new insights into how cells accessorize their proteins
5. Ancient mother spawns new insight on reptile reproduction
6. New insights into the regulation of PTEN tumor suppression function
7. Deep sequencing study reveals new insights into human transcriptome
8. Insights into micromillimeters
9. Integrins as receptors give insight into rotavirus and diarrhea
10. Study of marine snail leads to new insights into long-term memory
11. Researchers reveal insights into hidden world of protein folding
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)... CHICAGO , April 15, 2016  A ... companies make more accurate underwriting decisions in a ... offering timely, competitively priced and high-value life insurance ... health screenings. With Force Diagnostics, rapid ... and lifestyle data readings (blood pressure, weight, pulse, ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting ... are setting a new clinical standard in telehealth thanks ... By leveraging the higi platform, IMPOWER patients can routinely ... pulse and body mass index, and, when they opt ... and convenient visit to a local retail location at ...
(Date:3/29/2016)... 29, 2016 LegacyXChange, Inc. (OTC: ... and SelectaDNA/CSI Protect are pleased to announce our successful ... a variety of writing instruments, ensuring athletes signatures against ... collectibles from athletes on LegacyXChange will be assured of ... DNA. Bill Bollander , CEO states, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 23, 2016 , ... UAS LifeSciences, one of the leading ... UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing high ... its list of well-respected retailers. This list includes such fine stores as Whole ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... , June 23, 2016 Houston ... with the Cy-Fair Sports Association to serve as ... the agreement, Houston Methodist Willowbrook will provide sponsorship ... and connectivity with association coaches, volunteers, athletes and ... with the Cy-Fair Sports Association and to bring ...
(Date:6/23/2016)... June 23, 2016  The Prostate Cancer Foundation (PCF) is pleased ... and faster cures for prostate cancer. Members of the Class of 2016 were ... Read More About the Class of 2016 PCF Young ... ... ...
Breaking Biology Technology: