Navigation Links
New information on the waste-disposal units of living cells
Date:1/11/2012

Important new information on one of the most critical protein machines in living cells has been reported by a team of researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley. The researchers have provided the most detailed look ever at the "regulatory particle" used by the protein machines known as proteasomes to identify and degrade proteins that have been marked for destruction. The activities controlled by this regulatory particle are critical to the quality control of cellular proteins, as well as a broad range of vital biochemical processes, including transcription, DNA repair and the immune defense system.

"Using electron microscopy and a revolutionary new system for protein expression, we have determined at a subnanometer scale the complete architecture, including the relative positions of all its protein components, of the proteasome regulatory particle," says biophysicist Eva Nogales, the research team's co-principal investigator. "This provides a structural basis for the ability of the proteasome to recognize and degrade unwanted proteins and thereby regulate the amount of any one type of protein that is present in the cell."

Says the team's other co-principal investigator and corresponding author, biochemist Andreas Martin, "While the biochemical function of many of the proteasome components have been determined, and some subnanometer structures have been identified, it was unclear before now which component goes where and which components interact with one another. Now we have a much better understanding as to how the proteasome machinery works to control cellular processes and this opens the possibility of manipulating proteasome activity for the treatment of cancer and other diseases."

Nogales, who holds appointments with Berkeley Lab, UC Berkeley, and the Howard Hughes Medical Institute, and Martin, who holds appointments with UC Berkeley and the QB3 Institute, are the senior authors of a paper describing this work in the journal Nature. The paper is titled "Complete subunit architecture of the proteasome regulatory particle." Other co-authors were Gabriel Lander, Eric Estrin, Mary Matyskiela and Charlene Bashore.

At any given moment, a human cell typically contains about 100,000 different proteins, with certain proteins being manufactured and others being discarded as needed for the cell's continued prosperity. Unwanted proteins are tagged with a "kiss-of-death" label in the form of a polypeptide called "ubiquitin." A protein marked with ubiquitin is delivered to any one of the some 30,000 proteasomes in the cell barrel-shaped complexes which act as waste disposal units that rapidly break-down or degrade the protein. The 2004 Nobel Prize in chemistry was awarded to a trio of scientists who first described the proteasome process, but a lack of structural information has limited the scientific understanding of the mechanics behind this process.

Nogales, an expert on electron microscopy and image analysis, and Martin, who developed the new protein expression system used in this work, combined the expertise of their respective research groups to study the proteasome regulatory particle in yeast. The particle features 19 sub-units that are organized into two sub-complexes, a "lid" and a "base." The lid contains the regulatory elements that identify the ubiquitin tag marking a protein for destruction, and the base features a hexameric ring that pulls the tagged protein inside the chamber of the proteasome barrel where it is degraded.

"The lid consists of nine non-ATPase proteins including ubiquitin receptors that accept properly tagged proteins but prevent a protein not marked for degradation from engaging with the proteasome," Nogales says. "Since degradation is irreversible, it is critical that only ubiquitin-tagged proteins engage the proteasome. Interestingly, the ubiquitin tag has to be removed before the protein can be translocated into the proteasome's destruction chamber, so the lid also contains de-ubiquitination enzymes that remove the tags after the protein has engaged with the proteasome."

The proteasome regulatory particle's base contains six distinct AAA+ ATPases that form the hetero-hexameric ring, which serves as the molecular motor of the proteasome.

"We predict that the ATPases use the energy of ATP binding and hydrolysis to exert a pulling force on engaged proteins, unfolding and translocating them through a narrow central pore and into the degradation chamber," Martin says. "The steps in the proteasome process from protein recognition to de-ubiquitination and degradation have to be very highly coordinated in time and space. Locating all of these components and identifying their relative orientations has been very telling about how the processes are coordinated with each other."

Nogales credits the protein expression system developed by Martin and his research group, in which proteins are expressed and assembled in bacteria, as being critical to the success of this research.

"Until now researchers had to work with purified protein complexes from the cell, which could not be manipulated or modified in any way," she says. "Andy Martin's new heterologous expression system allows for the manipulation and dissection of protein functions. For our studies it was crucial to generate lid sub-complexes that had one marker at a time in each of the subunits so that we could determine the position of each protein within the lid. With this new system we generated truncations, deletions and fusion constructs that were used to localize individual subunits and delineate their boundaries within the lid."


'/>"/>
Contact: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology news :

1. Light makes write for DNA information-storage device
2. Creative Commons non-commercial licenses impede the re-use of biodiversity information
3. Pristine reptile fossil holds new information about aquatic adaptations
4. Action plan for information on invasive alien species
5. We are not only eating materials, we are also eating information
6. In quest for new therapies, clinician-scientist team unlocks hidden information in human genome
7. New technique yields troves of information from nanoscale bone samples
8. Numera and HealthTrio LLC Form Partnership to Provide Objective Health Information for Millions of Consumers
9. Finnish twin study yields new information on how fat cells cope with obesity
10. JAMIA reports on people, their information needs and social networks
11. Study of deer mice on Californias Channel Islands provides new information on hantavirus
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New information on the waste-disposal units of living cells
(Date:4/28/2016)... First quarter 2016:   , ... the first quarter of 2015 The gross margin was ... 18.8) and the operating margin was 40% (-13) Earnings ... flow from operations was SEK 249.9 M (21.2) , ... SEK 7,000-8,500 M. The operating margin for 2016 is ...
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
(Date:3/29/2016)... LegacyXChange, Inc. (OTC: LEGX ... Protect are pleased to announce our successful effort to ... of writing instruments, ensuring athletes signatures against counterfeiting and ... athletes on LegacyXChange will be assured of ongoing proof ... Bill Bollander , CEO states, "By inserting ...
Breaking Biology News(10 mins):
(Date:5/27/2016)... ... ... Doctors in Italy, Japan, the UK and the US have reached some ... and its link to malignant mesothelioma. Surviving Mesothelioma has just posted the details of ... , The studies analyzed for the new report included more than 3,447 cancer ...
(Date:5/26/2016)... -- Q BioMed Inc. (OTCQB: QBIO), a biotechnology ... presenter at the 5th Annual Marcum MicroCap Conference on Thursday, ... at the Grand Hyatt Hotel. The Company,s ... is scheduled to begin at 11a.m ET in the Broadway ... developments and outline milestones for the balance of 2016 and ...
(Date:5/25/2016)... ... May 25, 2016 , ... Lajollacooks4u has become a rising hotspot for ... one of its top attractions. Fortune 500 companies, such as Illumina, Hewlett-Packard, Qualcomm ... and intimate team-building experience. , Each event kicks off with an olive oil and ...
(Date:5/25/2016)... ... May 25, 2016 , ... Scientists at the University of Athens ... for mesothelioma may be hampering the research that could lead to one good one. ... to read it now. , The team evaluated 98 mesothelioma patients ...
Breaking Biology Technology: