Navigation Links
New hope for stem cells, regenerative medicine emerges from the lab
Date:12/17/2013

Today, December 17, JoVE, the Journal of Visualized Experiments, has published a novel technique that could resolve a snag in stem cell research for application in regenerative medicinea strategy for reprograming cells in vivo to act like stem cells that forgoes the risk of causing tumors.

Dr. Kostas Kostarelos, principal investigator of the Nanomedicine Lab at the University of Manchester, said that he and his colleagues have discovered a safe approach to reprogramming somatic cells (which constitute most of the cells in the body) into induced pluripotent stem (iPS) cells. Research in this field has been embraced as an alternative to the controversial use of embryonic stem cells.

"We have induced somatic cells within the liver of adult mice to transiently behave as pluripotent stem cells," said Dr. Kostas Kostarelos, the lab's principal investigator, "This was done by transfer of four specific genes, previously described by the Nobel-prize winning Shinya Yamanaka, without the use of viruses but simply plasmid DNA [a small circular, double-stranded piece of DNA used for manipulating gene expression in a cell]."

The technique comes as an alternative to Dr. Shinya Yamanaka's reprograming methods, which won him the Nobel prize in 2012. Dr. Yamanaka's approach involved reprogramming somatic cells in vitro by introducing four genes through the use of a virus. While promising, the use of this method has been limited. As Dr. Kostarelos's article states, "One of the central dogmas of this emerging field is that in vivo implantation of [these stem] cells will lead to their uncontrolled differentiation and the formation of a tumor-like mass."

Dr. Kostarelos and his team have determined that their technique does not share the risk of uncontrolled stem cell growth into tumors as seen in in vitro, viral-based methods. "[This is the] only experimental technique to report the in vivo reprogramming of adult somatic cells to pluripotency using non-viral, transient, rapid and safe methods," Kostarelos said.

The Nanomedicine Lab's approach involves injecting large volumes of plasmid DNA to reprogram cells. However, because plasmid DNA is short-lived in this scenario, the risk of uncontrolled growth is reduced.

The research group chose to publish their technique with JoVE as a means to emphasize the novelty, uniqueness and simplicity of their procedure. Along with their article, a demonstration of their technique has been published as a peer-reviewed video to ensure the proper replication of this technique by other researchers in the field.


'/>"/>

Contact: Rachel Greene
rachel.greene@jove.com
617-250-8451
The Journal of Visualized Experiments
Source:Eurekalert  

Related biology news :

1. Tortoise and the hare: New drug stops rushing cancer cells, slow and steady healthy cells unharmed
2. Cell receptor has proclivity for T helper 9 cells, airway inflammation
3. First dual-action compound kills cancer cells, stops them from spreading
4. Osteoporosis drug stops growth of breast cancer cells, even in resistant tumors
5. Colon cancer researchers target stem cells, discover viable new therapeutic path
6. Genetic research develops tools for studying diseases, improving regenerative treatment
7. Gallbladder shown as potential stem cell source for regenerative liver and metabolic disease
8. Discovery of reprogramming signature may help further stem cell-based regenerative medicine research
9. SDSU opens new regenerative research institute
10. IUPUI stem cell research could expand clinical use of regenerative human cells
11. Advance in regenerative medicine could make reprogrammed cells safer while improving their function
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New hope for stem cells, regenerative medicine emerges from the lab
(Date:3/30/2017)... March 30, 2017 The research team of ... three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae ... realm of speed and accuracy for use in identification, crime investigation, ... cost. ... A research ...
(Date:3/28/2017)... India , March 28, 2017 ... IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software ... Vertical, and Region - Global Forecast to 2022", published ... Billion in 2016 and is projected to reach USD ... between 2017 and 2022. The base year considered for ...
(Date:3/24/2017)... Research and Markets has announced the addition ... Trends - Industry Forecast to 2025" report to their offering. ... The Global Biometric ... of around 15.1% over the next decade to reach approximately $1,580 ... market estimates and forecasts for all the given segments on global ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... Los Angeles, CA (PRWEB) , ... ... ... Pharmaceuticals, Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) ... all uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed ...
(Date:10/10/2017)... Parks Associates announced today that Tom Kerber , Director ... , October 11 in Scottsdale, Arizona . Kerber will ... safety and security products impact the competitive landscape. ... Parks Associates: Smart Home Devices: Main Purchase Driver ... "The residential security market has experienced continued growth, and the introduction of ...
(Date:10/10/2017)... ... October 10, 2017 , ... The ... prestigious awards honoring scientists who have made outstanding contributions to analytical ... during Pittcon 2018, the world’s leading conference and exposition for laboratory science, which ...
(Date:10/9/2017)... ... ... At its national board meeting in North Carolina, ARCS® Foundation ... Physics and Astronomy, has been selected for membership in ARCS Alumni Hall of ... Breakthrough Prize in Fundamental physics for the discovery of the accelerating expansion of the ...
Breaking Biology Technology: