Navigation Links
New growth inhibitors more effective in plants, less toxic to people
Date:3/2/2011

WEST LAFAYETTE, Ind. - A Purdue University scientist and researchers in Japan have produced a new class of improved plant growth regulators that are expected to be less toxic to humans.

Angus Murphy, a professor of horticulture, said the growth inhibitors block the transport of auxin, a plant hormone that, when transported throughout the plant, controls growth processes. Current growth regulators that inhibit auxin transport are inefficient because they also have hormonelike activity or affect other important plant processes. Current growth inhibitors also are often toxic.

Growth regulators are important in ornamental plants and horticultural crops that would require labor-intensive manipulation and pruning. The inhibitors are used to keep plants a desired size and shape and control fruit formation.

"These regulators would be used primarily on ornamental plants, flowers and trees that aren't going to be genetically changed easily," Murphy said. "Growth regulators are used regularly on this type of plant. Inhibition of auxin transport with these new compounds is also an alternative to the use of more toxic regulators like 2,4-D."

The toxicity of growth regulators can be an environmental concern and add safety and monitoring costs to commercial growing operations. They are generally not applied to edible portions of plants or are applied early enough that there is little or no residue on edible portions of plants.

The new plant growth inhibitors are derived from natural and artificial auxins but have a bulky benzoyl group - a chemical conjugate derived from benzoic acid - attached that prevents movement of the inhibitor out of the cell.

"Since it looks like auxin, it will open the door, but it can't get through," Murphy said. "However, these new growth regulators have no hormonal activity themselves."

Murphy worked with scientists from several universities in Japan, including Okayama University of Science, Tokyo Metropolitan University, Niigata University and the Nara Institute of Science and Technology. Their findings were reported in the Journal of Biological Chemistry.

Murphy said he would continue studying how to regulate other hormonal pathways in plants and use the new regulator to understand hormonal transport in plants. Companies licensed by the Japanese institutes will continue environmental and toxicity testing of the regulators in greenhouse and field trials.


'/>"/>

Contact: Brian Wallheimer
bwallhei@purdue.edu
765-496-2050
Purdue University
Source:Eurekalert

Related biology news :

1. Growth in the global carbon budget
2. Discovery of natural compounds that could slow blood vessel growth
3. Study links nicotine with breast cancer growth and spread
4. Making flies sick reveals new role for growth factors in immunity
5. Bare bones of crystal growth: Biomolecules enhance metal contents in calcite
6. The bonsai effect: Wounded plants make jasmonates, inhibiting cell division, stunting growth
7. Mayo researchers identify dangerous two-faced protein crucial to breast cancer spread and growth
8. Exercise increases brain growth factor and receptors, prevents stem cell drop in middle age
9. Duke study pinpoints potential green collar job growth in US
10. Surface-level ozone pollution set to reduce tree growth 10 percent by 2100
11. Lack of vitamin D causes weight gain and stunts growth in girls
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... MONICA, Calif. , April 13, 2017 ... New York will feature emerging and evolving ... Summits. Both Innovation Summits will run alongside the expo ... of speaker sessions, panels and demonstrations focused on trending ... coast,s largest advanced design and manufacturing event will take ...
(Date:4/11/2017)... , April 11, 2017 No ... but researchers at the New York University Tandon ... of Engineering have found that partial similarities between ... systems used in mobile phones and other electronic ... The vulnerability lies in the fact ...
(Date:4/5/2017)... YORK , April 5, 2017 Today ... is announcing that the server component of the HYPR ... known for providing the end-to-end security architecture that empowers ... HYPR has already secured over 15 million ... makers including manufacturers of connected home product suites and ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... , ... October 11, 2017 , ... Disappearing forests and ... lives of over 5.5 million people each year. Especially those living in larger cities ... Treepex - based in one of the most pollution-affected countries globally - decided to ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today ... designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) ... able to cross the cell membrane and bind intracellular STAT3 and inhibit its ...
(Date:10/10/2017)... , ... October 10, 2017 ... ... cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing ... HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and CEO of ... Rotary Club. The event entitled “Stem Cells and Their Regenerative Powers,” ... Dr. Harman, DVM, MPVM was joined by two human doctors: Peter B. Hanson, ...
Breaking Biology Technology: