Navigation Links
New genomic research to tackle supply and demand issues in emerging forestry biofuels industry
Date:8/24/2009

Vancouver, BC In order to reduce the Province's greenhouse gas emissions, the BC Bioenergy Strategy is calling for greatly increased production of renewable biofuels such as ethanol, from biomass grown in BC.

But as ethanol produced from corn, sugar and other food products continues to raise concerns about impact on global food prices and availability, trees are being hailed as a source of next generation renewable biofuels.

In the meantime, the unprecedented devastation caused by the mountain pine beetle infestation in BC has created large amounts of unmarketable lodgepole pine that has the potential to supply the biofuel industry for the next 20 years and beyond.

While it seems to be a formula for success, there are many unanswered questions: How to efficiently convert this dead timber to ethanol? (Which is a much more complex process than grain conversion) Also, what new biomass crops or trees to develop and plant in order to guarantee a steady long-term supply of feedstock for BC biofuel production?

Two new research projects, largely funded by Genome BC, will help to answer these questions and unlock the valuable green energy found within BC's forests.

The first of the two projects will use genomics to determine the most efficient methods of liberating fermentable sugars from the dead pine sugars that are broken down with enzymes and then fermented to ethanol.

Dr. Jack Saddler, UBC's Dean of Forestry, is leading this $1.1 million project, entitled, Optimizing Ethanol Fermentation From Mountain Pine Beetle Killed Lodgepole Pine.

"Trees are a huge store of chemical energy that can be converted into liquid biofuel but we need to identify the ideal method to produce these sugars economically," he says. "What makes wood so difficult to breakdown when compared to corn or other starch-based biofuel, is that the cellulose, unlike starch, is designed by nature to NOT be broken down easily."

Saddler is confident that the solution they find for coniferous trees will be transferable to deciduous varieties as well. "The idea is that once the dead lodgepole pine starts to run out in about 20 years, we will have had enough time to replant with a fast growing variety to replace it," he says.

Enter the poplar tree. As the fastest growing tree in North America, it is one of the only species that will be ready for harvest by the time the beetle-killed conifers have run out.

Principal investigators Drs. Carl Douglas and Shawn Mansfield, both of UBC, will aim to use genomics to optimize breeding and selection of poplars to improve their potential as a biofuel resource.

Their $7.7 million project, entitled Optimized Populus Feedstocks and Novel Enzyme Systems for a BC Bioenergy Sector, will build on a foundation of previous Genome BC research, which contributed to the sequencing of the poplar genome in 2004.

In addition to their quick growth, poplars, which are native to BC and many other regions, produce wood that is easier to convert to fermentable sugars for ethanol production than conifers. The tree is also well known for its capacity to sequester carbon from the atmosphere and even to clean up contaminated waste sites.

The researchers will identify the genetic characteristics of certain wild poplars that allow their woods to be broken down more easily, and with a higher yield, so that liquid biofuels can be produced more rapidly and inexpensively, with less chemical processing.

Mansfield maintains the importance of staying ahead of the curve: "We need to be thinking about feedstock supply 10-15 years from now, so that we will have poplars ready to be harvested, which will allow us to keep up with industry demand," he says.

This research will ultimately create the basis for a poplar-breeding program to fuel the forestry bioenergy sector.

Says Douglas, "Using the poplar's genome sequence, we can apply many of the same approaches used in human genomics to study the genetic basis of disease. This will enable the rapid improvement of this tree for use as biofuel feedstock and in future, plantations of improved poplar trees will have the potential to provide a source of renewable biofuels for BC."

Douglas also points out that these trees are highly adaptable and can be grown in many parts of the province, without affecting valuable farm land used for food production.

"Genome BC is proud to be a part of an international group of organizations that is funding these highly valuable research projects," says Dr. Alan Winter, President and CEO of Genome BC. "Ultimately, they will help reduce the human contribution to greenhouse gas emissions by developing ethanol-based alternatives."


'/>"/>

Contact: Rachael Froese Zamperini
rzamperini@genomebc.ca
604-612-6345
Genome BC
Source:Eurekalert

Related biology news :

1. DNA replication behavior in complex organisms may foreshadow leaps in genomic discoveries
2. UCI and CODA Genomics collaborate to re-engineer yeast for biofuel production
3. Metagenomics of the deep Mediterranean
4. Metagenomics of the deep Mediterranean
5. Inconsistencies with Neanderthal genomic DNA sequences
6. Microarray sequence capture speeds large-scale resequencing of targeted genomic regions
7. NYUs Center for Genomics & Systems Biology receives $4.4 million NSF grant
8. Human RecQ helicases, homologous recombination and genomic instability
9. Virginia Tech plant scientist leads study on genomics of parasitic plants
10. Study finds health professionals, public unprepared for genomic medicine
11. At home genomic tests for disease risk premature
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... and LONDON , April ... part of EdgeVerve Systems, a product subsidiary of ... today announced a partnership to integrate the Onegini ...      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) ... their customers enhanced security to access and transact ...
(Date:4/14/2016)... , April 14, 2016 ... and Malware Detection, today announced the appointment of ... the new role. Goldwerger,s leadership appointment comes ... the heels of the deployment of its platform at ... behavioral biometric technology, which discerns unique cognitive and physiological ...
(Date:3/23/2016)... 2016 Einzigartige ... und Stimmerkennung mit Passwörtern     ... MESG ), ein führender Anbieter digitaler Kommunikationsdienste, ... SpeechPro zusammenarbeitet, um erstmals dessen Biometrietechnologie einzusetzen. ... Möglichkeit angeboten, im Rahmen mobiler Apps neben ...
Breaking Biology News(10 mins):
(Date:5/2/2016)... Willoughby, Ohio (PRWEB) , ... May 02, 2016 ... ... website. Designed with its clients in mind, the fresh look and added functionality ... capabilities. , “Recent years have seen a dynamic shift in agriculture – from ...
(Date:4/29/2016)... , ... April 30, 2016 , ... The MIT bioLogic ... design, the bioLogic team explored how bacterial properties can be applied to fabric and ... Natto bacteria, which move in response to humidity change. The team harvested Natto cells ...
(Date:4/29/2016)... , April 29, 2016 ... Transparency Market Research "Separation Systems for Commercial Biotechnology ... Trends, and Forecast 2015 - 2023", the separation ... US$ 10,665.5 Mn in 2014 and is projected ... 2015 to 2023 to reach US$ 19,227.8 Mn ...
(Date:4/29/2016)... ... ... Intelligent Implant Systems announced today that the two-level components for the Revolution™ ... States. These components expand the capabilities of the system and allow Revolution™ to ... of 2015, the company has seen significant sales growth in 1Q 2016, and the ...
Breaking Biology Technology: