Navigation Links
New genes for risk and progression of rare brain disease identified
Date:6/19/2011

PHILADELPHIA There are new genetic clues on risk factors and biological causes of a rare neurodegenerative disease called progressive supranuclear palsy (PSP), according to a new study from an international genetics team led by researchers from the Perelman School of Medicine at the University of Pennsylvania. In the largest genetics study of the disease, three new genes associated with risk for PSP were identified and two additional genetic variants affecting risk for PSP were confirmed. The paper appears in online in Nature Genetics.

This gives new insight into a disease that has intriguing contrasts and similarities to other neurodegenerative diseases, including Parkinson's disease, frontotemporal dementia (FTD) and Alzheimer's disease.

"PSP is a devastating disease with no available treatments. This work increases what we know not only about the genetics but also about the underlying cause of the disease," said Gerard Schellenberg, PhD, professor of Pathology and Laboratory Medicine in the Perelman School of Medicine at the University of Pennsylvania and the study's senior author. "We hope this work not only will benefit patients with PSP, but will also increase our understanding of related more common diseases, such as Alzheimer's disease."

Progressive supranuclear palsy (PSP), a form of frontotemporal dementia, affects around 3-6 people per 100,000 and, after Parkinson's disease, is the second most common cause of degenerative parkinsonism. The disease is characterized by a difficulty coordinating eye movement, imbalance and gait instability, stiff movements, mood and emotional changes. Biologically, PSP is primarily caused by an abnormal accumulation of tau protein, which is well-known for its secondary role in Alzheimer's disease. Both environmental insults (i.e. repetitive brain trauma) and inherited factors contribute to the risk of developing tauopathies.

In a genome wide association (GWA) study comparing 1,114 autopsy-confirmed cases of PSP to 3,287 control subjects, researchers found significant genetic variations in three regions, at EIF2AK3, STX6 and MOBP. The study was replicated with a second set of subjects (1,051 clinically diagnosed with PSP, compared to 3,560 unique controls).

Three newly-identified genes include:

  • EIF2AK3 is a gene that encodes for endoplasmic reticulum unfolded protein response (UPR) which clears potentially toxic misfolded proteins. UPR disruption can influence PSP risk, according to researchers, and modifying the UPR has the potential to modify risk and possibly the course of disease.
  • STX6 encodes a protein called syntaxin 6 (Stx6) that typically shuttles vesicles within the cell, but genetic variation at STX6 may change intracellular transport or cause toxin absorption, contributing to PSP disease development.
  • The function of MOBP and the protein it encodes, MOBP, is still unclear, but the protein is found in brain regions affected in PSP and may be involved in myelin formation.

MAPT Gene Variations Show Risk

Previous work showed that genetic causes of tauopathies include mutations in the gene that encodes microtubule associated protein tau (MAPT). In this study, researchers confirmed two independent variants in MAPT affecting risk for PSP, one of which influences MAPT brain expression. The risk associated with the more common MAPT H1 haplotype was statistically stronger than the effect the APOE ε3/ε4 genotype has on Alzheimer's disease risk (95 percent of PSP subject chromosomes had the H1 polymorphism, compared to 77.5 percent of controls).

There is no current genetic test to measure PSP risk, but these findings are the first step in understanding the genes associated with risk for PSP, which could someday lead to the ability to predict more accurately who will get this disease. "Prediction will become important when we have preventative therapies for this devastating condition," said Dr. Schellenberg.

Researchers now have another drug discovery target to investigate a drug to modulate the unfolded protein response to modify the risk and progression of PSP.

With no FDA-approved treatment to change the course of this rare disease, clinical trials and drug discovery efforts looking for potential PSP treatments are greatly needed. A Phase 2/3, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of Allon's davunetide is looking to treat the underlying pathology of PSP while also improving symptoms of the disease. The davunetide trial is currently enrolling PSP patients at Penn Medicine, interested patients are encouraged to visit ClinicalTrials.gov and talk to their physician to determine eligibility.


'/>"/>

Contact: Kim Menard
kim.menard@uphs.upenn.edu
215-200-2312
University of Pennsylvania School of Medicine
Source:Eurekalert

Related biology news :

1. Leaky genes put evolution on the fast track, Pitt and UW-Madison researchers find
2. Novel pathway regulating angiogenesis may fight retinal disease, cancers
3. In a genetic research first, Mayo Clinic turns zebrafish genes off and on
4. Gladstone scientists identify genes involved in embryonic heart development
5. Big picture of how interferon-induced genes launch antiviral defenses revealed
6. Quest for genes involved in celiac disease
7. Genes an important factor in urinary incontinence
8. Alzheimer’s disease consortium identifies four new genes for Alzheimer’s disease risk
9. New strategy for stimulating neurogenesis may lead to drugs to improve cognition and mood
10. 4 new genes identified for Alzheimers disease risk
11. Butterfly study reveals traits and genes associated with establishment of new populations
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/20/2017)... , March 20, 2017 PMD Healthcare ... personal spirometer and Wellness Management System (WMS), a remote, ... Founded in 2010, PMD Healthcare is a Medical Device, ... a mission dedicated to creating innovative solutions that empower ... With that intent focus, PMD developed the first ever ...
(Date:3/9/2017)... Australia , March 9, 2017 /PRNewswire/ ... at the prestigious World Lung Imaging Workshop at the ... Fouras , was invited to deliver the latest data ... This globally recognised event brings together leaders at the ... latest developments in lung imaging. "The ...
(Date:3/7/2017)... 2017   HireVue , the leading provider of ... the best talent, faster, today announced the additions of ... and Diana Kucer as Chief Marketing Officer ... team poised to drive continued growth in the company,s ... of record bookings in 2017. "Companies worldwide ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... , March 23, 2017  GlobeImmune, Inc. today ... for the sale of 12,835,490 shares of its common ...  ecosystem of companies. In connection with the sale of its ... in cash and issue to GlobeImmune 200,000 shares, an ... "We are pleased to enter into ...
(Date:3/23/2017)... 23, 2017 Kineta, Inc., a biotechnology ... therapies in immuno-oncology, today announced the discovery and ... compounds that activate interferon response factor 3 (IRF3) ... immune-mediated tumor regression in a murine colon carcinoma ... demonstrated complete tumor regression to initial drug treatment ...
(Date:3/23/2017)... , March 23, 2017  Agriculture technology company Cool ... financing and note conversion to commercialize its Cool Terra ... focused on developing products that are simultaneously profitable as ... in the last 18 months. This latest round of ... Venture Partners. The company,s primary product, ...
(Date:3/22/2017)... Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN), today announced a major research ... GSK to generate genetic sequence data from the 500,000 volunteer ... researchers to gain valuable insights to support advances in the ... and life threatening diseases. ... Genetic evidence has revolutionized scientific discovery ...
Breaking Biology Technology: