Navigation Links
New gene editing method shows promising results for correcting muscular dystrophy
Date:8/14/2014

DALLAS August 14, 2014 UT Southwestern Medical Center researchers successfully used a new gene editing method to correct the mutation that leads to Duchenne muscular dystrophy (DMD) in a mouse model of the condition.

Researchers used a technique called CRISPR/Cas9-mediated genome editing, which can precisely remove a mutation in DNA, allowing the body's DNA repair mechanisms to replace it with a normal copy of the gene. The benefit of this over other gene therapy techniques is that it can permanently correct the "defect" in a gene rather than just transiently adding a "functional" one, said Dr. Eric Olson, Director of the Hamon Center for Regenerative Science and Medicine at UT Southwestern and Chairman of Molecular Biology.

Using CRISPR/Cas9, the Hamon Center team was able to correct the genetic defect in the mouse model of DMD and prevent the development of features of the disease in boys, which causes progressive muscle weakness and degeneration, often along with breathing and heart complications.

"Our findings show that CRISPR/Cas9 can correct the genetic mutation that leads to DMD, at least in mice," said Dr. Eric Olson, holder of the Pogue Distinguished Chair in Research on Cardiac Birth Defects, the Robert A. Welch Distinguished Chair in Science, and the Annie and Willie Nelson Professorship in Stem Cell Research. "Even in mice with only a subset of corrected cells, we saw widespread and progressive improvement of the condition over time, likely reflecting an advantage of the corrected cells and their contribution to regenerating muscle."

He also pointed out "this is very important for possible clinical application of this approach in the future. Skeletal muscle is the largest tissue in the human body and current gene therapy methods are only able to affect a portion of the muscle. If the corrected tissue can replace the diseased muscle, patients may get greater clinical benefit."

Although the genetic cause of DMD has been known for nearly 30 years, there are no treatments that can cure the condition. Duchenne muscular dystrophy breaks down muscle fibers and replaces them with fibrous and/or fatty tissue causing the muscle to gradually weaken.

DMD affects an estimated 1 in 3,600𔃄,000 male births in the United States, according to the Centers for Disease Control (CDC). Left untreated, those with DMD eventually require use of a wheelchair between age 8 and 11, and have a life expectancy of 25 years. Initial symptoms include difficulty running and jumping, and delays in speech development. DMD can be detected through high levels of a protein called creatine kinase as it leaks into the blood stream, and is confirmed by genetic testing.

Genome editing through the CRISPR/Cas9 system is not currently feasible in humans. However, it may be possible, through advancements in technology, to use this technique to develop therapies for DMD in the future, Dr. Olson said.

"At the moment, we still need to overcome technical challenges, in particular to find better ways to deliver CRISPR/Cas9 to the target tissue and to scale up," Dr. Olson said. "But in the future we might be able to use this technique therapeutically, for example to directly target and correct the mutation in muscle stem cells and muscle fibers."

Added Chengzu Long, a graduate student in the Olson lab: "We are working on a more clinically feasible method to correct mutations in adult tissues, and have already made some progress."

The research, published online in the journal Science, is the inaugural paper from UT Southwestern's newly established Hamon Center for Regenerative Science and Medicine, made possible earlier this year by a $10 million endowment gift from the Hamon Charitable Foundation. The Center's goal is to understand the basic mechanisms for tissue and organ formation, and then to use that knowledge to regenerate, repair, and replace tissues damaged by aging and injury.

Degenerative diseases of the heart, brain, and other tissues represent the largest cause of death and disability in the world, affecting virtually everyone over the age of 40 and accounting for the lion's share of health care costs. Regenerative medicine represents a new frontier in science, which seeks to understand the mechanistic basis of tissue aging, repair, and regeneration and to leverage this knowledge to improve human health.


'/>"/>

Contact: Russell Rian
russell.rian@utsouthwestern.edu
214-648-3404
UT Southwestern Medical Center
Source:Eurekalert  

Related biology news :

1. Rapid method of assembling new gene-editing tool could revolutionize genetic research
2. Programmable RNA complex could speed genome editing in the lab
3. Powerful gene-editing tool appears to cause off-target mutations in human cells
4. Unprecedented control of genome editing in flies promises insight into human development, disease
5. New method of DNA editing allows synthetic biologists to unlock secrets of a bacterial genome
6. Global regulator of mRNA editing found
7. New insight into an emerging genome-editing tool
8. Genome editing goes hi-fi
9. A new genome editing method brings the possibility of gene therapies closer to reality
10. Splice-switching oligonucleotide therapeutics is new method for editing gene transcript
11. New 3-D stem cell culture method published in JoVE
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New gene editing method shows promising results for correcting muscular dystrophy
(Date:3/10/2016)... , March 10, 2016   Unisys Corporation (NYSE: ... Border Protection (CBP) is testing its biometric identity solution ... Diego to help identify certain non-U.S. citizens leaving ... The test, designed to help determine the efficiency and accuracy ... in February and will run until May 2016. --> ...
(Date:3/9/2016)... PALM BEACH GARDENS, Fla. , March 9, ... of identity management authentication and enrollment solutions, today ... proven DigitalPersona ® Altus multi-factor ... enable IT and InfoSec managers to step-up security ... friction.  Washington, DC ...
(Date:3/3/2016)... Calif. , March 3, 2016  2016FLEX, ... launched this week highlighting advancements in flexible, hybrid ... a record setting attendance - have gathered for ... this fast-growing field of electronics. The Flex Conference ... focal point for companies, R&D organizations, and universities ...
Breaking Biology News(10 mins):
(Date:5/20/2016)... ... 2016 , ... Kablooe Design, a leading provider of product design and development ... of the business. “We have worked hard to build long-term relationships,” says President and ... and honor of serving their product design and development needs through the years.” , ...
(Date:5/19/2016)... , May 19, 2016 There ... fully recover given the relentless pressures in pricing and ... in the investors circle though - numerous opportunities are ... of today,s session, ActiveWallSt.com,s presents four names in this ... Vitae Pharmaceuticals Inc. (NASDAQ: VTAE ), Anthera ...
(Date:5/18/2016)... ... 18, 2016 , ... Shimadzu Scientific Instruments announces its sponsorship ... This two-day camp will take place annually starting June 2016. It will provide ... in preparation for a university academic program. , The laboratory- and technology-focused ...
(Date:5/18/2016)... ... ... Ryan Benton was diagnosed with Duchenne Muscular Dystrophy (DMD) at the age of ... is a relatively common progressive genetic disorder, which causes aggressive deterioration of the muscles. ... met with the founder of the Stem Cell Institute in Panama City, ...
Breaking Biology Technology: