Navigation Links
New evidence for female control in reproduction
Date:11/19/2007

WASHINGTON, D.C. Adding another layer of competition to the mating game, scientists are reporting possible biochemical proof that the reproductive system of female mammals can sense the presence of sperm and react to it by changing the uterine environment. This may be the molecular mechanism behind post-copulatory sexual selection, in which females that have mated with several partners play a role in determining which sperm fertilizes their egg.

Lead author Alireza Fazeli says that the deep new molecular insights into this post-coital ladies choice has profound implications for in-vitro fertilization (IVF), cloning, and animal breeding. It is also a windfall for evolutionary biology, providing a possible explanation for female promiscuity in the animal kingdom, he adds.

In a first-of-its-kind study scheduled for ACS Journal of Proteome Research, Fazelis international scientific team reports the first chemical evidence of a sperm recognition system in the oviducts of pigs standard animals for such research because their reproductive systems are similar to humans.

In the traditional view, competition for the egg is male-oriented, with sperm themselves deciding which fertilizes the egg by being the faster swimmer. With post-copulatory sexual selection, the female is in control, her oviducts selecting the winner the best quality sperm from the healthiest male and rejecting the rest.

This study clearly shows that the sperms arrival in the female reproductive tract triggers a cascade of changes that leads to alteration of protein production in the oviduct and a change in the oviductal environment. We speculate that this is mainly done to prepare oviduct environment for storing sperm, fertilization and early embryonic development, Fazeli said. However this can also be used as a detection and selection system that alerts females to the presence of different kinds of sperm and then triggers mechanisms in the oviducts that control sperm transport, binding and activation for fertilization.

We know sperm selection exists in nature, especially in promiscuous species, when females mate with several males, Fazeli said. Baboons are a good example. During one reproductive cycle, if the female mates with several males, most of the time the offspring belong to one of the males not a spread between all of them We are now seeing what can be the molecular basis for this effect.

While sperm interaction with oviduct cells has been studied in laboratory cultures, the new research is the first to provide evidence for this poorly-understood process in living animals, Fazeli said. Using minimally invasive techniques, the researchers compared protein changes in the oviductal fluids before and after sperm introduction to the reproductive tract.

The data shows that the mammalian female reproductive tract is a far more tightly regulated environment than once thought a fact that Fazeli says is nearly completely ignored by modern IVF. He believes the new findings have profound implications for the massive IVF industry, which has grown exponentially in the past 25 years, as well as cloning. Both techniques rely on egg fertilization outside of their finely-tuned reproductive environment.

The female reproductive tract is a very highly organized and regulated system, Fazeli explained. With IVF, the embryo can develop into an adult, but the question remains: Are we doing the fine-tuning right? We are not sure if what we are doing, based on differences between in-vitro and in-vivo fertilization, is creating health problems for these babies.

Applications for this research extend into agricultural animal breeding, since it has the potential to improve fertilization rates and reproductive techniques in livestock.

Fazeli suggests that the work his team is doing is also applicable to the artificial insemination industry. Some of the products that a females oviducts produce in response to sperm are meant to store and keep the sperm alive. This may be an aspect of post-coital sexual selection since sperm may remain viable in the human females reproductive tract for nearly five days. Other female animals sustain sperm for even longer periodsbats can do so for up to six months.

Fazeli said that another aspect of this work relates to understanding the mechanisms involved in determination of self and non-self by the immune system. Since sperm are a foreign entity in the female reproductive tract, the immune system should attack and destroy them. In reality, however, sperm are protected and stored.

The traditional explanation is that sperm somehow evade the immune response. Fazeli says his data shows that this is not true. He found that the female immune system instead recognizes sperm as a friend, not a foe. Fazeli suggests that the female reproductive tract is equipped with sensory systems that recognize sperm and alert the ancient, non-specific innate immune system to dampen its reaction towards them.

The main message from this work is that the female reproductive tract has a lot more control than previously thought, says Fazeli. This discovery profoundly influences our understanding of the physiology of events leading to conception and the bearing of offspring.


'/>"/>

Contact: Michael Bernstein
m_bernstein@acs.org
202-872-4400
American Chemical Society
Source:Eurekalert

Related biology news :

1. A private bandwidth for communication in bats: Evidence from insular horseshoe bats
2. Comet probes reveal evidence of origin of life, scientists claim
3. Evidence of a relationship between swimming babies and infections
4. Researchers find evidence linking stress caused by the Sept. 11 disaster with low birth weights
5. Fossil record supports evidence of impending mass extinction
6. Sex is thirst-quenching for female beetles
7. UT Southwestern researchers identify hundreds of genes controlling female fertility
8. Why do males and females frequently differ in body size and structure?
9. X-effect: female chromosome confirmed a prime driver of speciation
10. Vaginal reconstruction not needed for most inter-sex females, Hopkins study shows
11. Gene in male fish lures females into sex
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)... , April 15, 2016 ... "Global Gait Biometrics Market 2016-2020,"  report to their ... ) , ,The global gait biometrics market ... 13.98% during the period 2016-2020. Gait ... which can be used to compute factors that ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys ... founding CEO, Barrett Bready , M.D., who returned ... of the original technical leadership team, including Chief Technology ... of Product Development, Steve Nurnberg and Vice President of ... to the company. Dr. Bready served as ...
(Date:3/22/2016)... PROVO and SANDY, Utah ... Ontario (NSO), which operates the highest sample volume laboratory ... and Tute Genomics and UNIConnect, leaders in clinical sequencing ... announced the launch of a project to establish the ... panel. NSO has been contracted by ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... ... 27, 2016 , ... The Board of Directors of Biohaven ... Tilton as Chief Commercial Officer.  Mr. Tilton joined Biohaven from Alexion Pharmaceuticals, Inc. ... responsible for the commercialization of multiple orphan drug indications. Mr. Tilton has ...
(Date:4/27/2016)... ... April 27, 2016 , ... PathSensors, Inc., a ... Board. Dr. Lamka will assist PathSensors in expanding the use of the company’s ... the CANARY® test platform for the detection of harmful pathogens, including a number ...
(Date:4/27/2016)... ... ... Global Stem Cells Group CEO Benito Novas announced that Duncan Ross, ... Kimera Labs in Miami. , In 2004, Ross received his Ph.D. in Immunology from ... and the suppression of graft vs. host disease (GVHD) under UM Professor Robert Levy ...
(Date:4/27/2016)... MedDay, a biotechnology company focused on ... of Catherine Moukheibir as Chairman of its Board of Directors. ... Jacques Garaud , who contributed to the rapid development of ... Catherine started her career in strategy consulting and investment ... London .  She held C-Suite level roles in some ...
Breaking Biology Technology: