Navigation Links
New enzyme targets for selective cancer therapies
Date:8/22/2014

(Edmonton) Thanks to important discoveries in basic and clinical research and technological advances, the fight against cancer has mobilized into a complex offensive spanning multiple fronts.

Work happening in a University of Alberta chemistry lab could help find new and more selective therapies for cancer. Researchers have developed a compound that targets a specific enzyme overexpressed in certain cancersand they have tested its activity in cells from brain tumours.

Chemistry professor Christopher Cairo and his team synthesized a first-of-its-kind inhibitor that prevents the activity of an enzyme called neuraminidase. Although flu viruses use enzymes with the same mechanism as part of the process of infection, human cells use their own forms of the enzyme in many biological processes.

Cairo's group collaborated with a group in Milan, Italy, that has shown that neuraminidases are found in excess amounts in glioblastoma cells, a form of brain cancer.

In a new study, a team from the National Cancer Institute tested Cairo's enzyme inhibitor and found that it turned glioblastoma cancer stem cellsfound within a tumour and believed to drive cancer growthinto normal cells. The compound also caused the cells to stop growing, suggesting that this mechanism could be important for therapeutics. Results of their efforts were published Aug. 22 in the Nature journal Cell Death & Disease.

Cairo said these findings establish that an inhibitor of this enzyme could work therapeutically and should open the door for future research.

"This is the first proof-of-concept showing a selective neuraminidase inhibitor can have a real effect in human cancer cells," he said. "It isn't a drug yet, but it establishes a new target that we think can be used for creating new, more selective drugs."

Long road from proof of concept to drug

Proving the compound can successfully inhibit the neuraminidase enzyme in cancer cells is just the first step in determining its potential as a therapy.

In its current form, the compound could not be used as a drug, Cairo explained, largely because it wasn't designed to breach the blood-brain barrier making it difficult to reach the target cells. The team in Milan had to use the compound in very high concentrations, he added.

The research advances our understanding of how important carbohydrates are to the function of cells. Although most of us think of glucose (blood sugar) as the only important sugar in biology, there is an entire area of research known as glycobiology that seeks to understand the function of complex carbohydrate structures in cells. Carbohydrate structures cover the surface of cells, and affect how cells interact with each other and with pathogens.

Scientists have known for decades that the carbohydrates found on cancer cells are very different from those on normal cells. For example, many cancers have different amounts of specific residues like sialic acid, or may have different arrangements of the same residues.

"The carbohydrates on the cell surface determine how it interacts with other cells, which makes them important in cancer and other diseases. So, if we can design compounds that change these structures in a defined way, we can affect those interactions," Cairo explained. "Finding new enzyme targets is essential to that process, and our work shows that we can selectively target this neuraminidase enzyme."

Although there has been a lot of work on targeting viral neuraminidase enzymes, Cairo's team has found inhibitors of the human enzymes. "The challenge in human cells is that there are four different isoenzymes. While we might want to target one for its role in cancer, hitting the wrong one could have harmful side-effects," he said.

The U of A team reached out to their colleagues in Milan who were studying the role of a specific neuraminidase isoenzyme in cancer cells isolated from patients. Cairo approached them about testing a compound his team identified last year, which was selective for the same isoenzyme.

"I expected it would do something, but I didn't know it would be that striking. It came out beautifully," Cairo said.

The U of A team is already working on improving the compound, and developing and testing new and existing inhibitors using a panel of in vitro assays they developed.

"We've been working on these enzymes for about five years. Validation of our strategydesign of a selective neuraminidase inhibitor and application in a cell that overexpresses that enzymeis an achievement for us."


'/>"/>

Contact: Bryan Alary
bryan.alary@ualberta.ca
780-492-0436
University of Alberta
Source:Eurekalert  

Related biology news :

1. Penn biologists identify a key enzyme involved in protecting nerves from degeneration
2. New immune defense enzyme discovered
3. Genzyme/ACMG Foundation Genetics Training Award in Clinical Biochemical Genetics announced
4. ORNL process improves catalytic rate of enzymes by 3,000 percent
5. Scientists discover enzyme that could slow part of the aging process in astronauts -- and the elderly
6. New screening technique yields elusive compounds to block immune-regulating enzyme
7. UCLA scientists discover how key enzyme involved in aging, cancer assembles
8. Is it a rock, or is it Jell-O? Defining the architecture of rhomboid enzymes
9. Brain enzyme is double whammy for Alzheimers disease
10. Ancient enzymes function like nanopistons to unwind RNA
11. Remarkable enzyme points the way to reducing nitric acid use in industry
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New enzyme targets for selective cancer therapies
(Date:2/10/2016)... PUNE, India , February 10, 2016 ... --> According to 2016 iris ... fingerprint identification iris recognition is more widely ... are available with both fingerprint and iris ... allows the user to avoid purchasing two ...
(Date:2/4/2016)... , Feb. 4, 2016 The field ... one of the most popular hubs of the ... and other huge studies of human microbiota, have ... few years, the microbiome space has literally exploded ... research. This report focuses on biomedical aspects ...
(Date:2/2/2016)... 2016  BioMEMS devices deployed in hospitals ... medical screening and diagnostic applications, such as ... that facilitate and assure continuous monitoring without ... being bolstered through new opportunities offered by ... coupled with wireless connectivity and low power ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... , February 11, 2016 ... Corporation ("PositiveID" or "Company") (OTCQB: PSID), a life ... today that its Thermomedics subsidiary, which markets the ... its growth plan in January 2016, including entering ... increasing sequential monthly sales growth, and establishing several ...
(Date:2/10/2016)... - BioAmber Inc. (NYSE: BIOA ), a leader ... & Co. Ltd., its partner in the ... an additional CDN$25 million in the joint venture for ... to 40%.  Mitsui will also play a stronger role ... Sarnia , providing dedicated resources alongside BioAmber,s ...
(Date:2/10/2016)... York, New York (PRWEB) , ... ... ... Pharmaceuticals Inc. (NASDAQ: REGN) today announced that it has joined the Human ... and immunotherapies for infectious diseases and cancer. , The Human Vaccines ...
(Date:2/10/2016)... ... February 10, 2016 , ... HOLLOWAY ... of Pharmaceutical Engineering (ISPE) Rocky Mountain Chapter 21st Annual Vendor Exhibition on Thursday, ... more than 100 tables for its annual event, which will run from 3:00 ...
Breaking Biology Technology: