Navigation Links
New discovery provides insight on long-standing pregnancy mystery
Date:6/7/2012

NEW YORK, June 7, 2012 Researchers at NYU School of Medicine have made an important discovery that partially answers the long-standing question of why a mother's immune system does not reject a developing fetus as foreign tissue.

"Our manuscript addresses a fundamental question in the fields of transplantation immunology and reproductive biology, namely, how do the fetus and placenta, which express antigens that are disparate from the mother, avoid being rejected by the maternal immune system during pregnancy?" explained lead investigator Adrian Erlebacher, MD, PhD, associate professor of pathology and a member of the NYU Cancer Institute at NYU Langone Medical Center. "What we found was completely unexpected at every level."

The researchers discovered that embryo implantation sets off a process that ultimately turns off a key pathway required for the immune system to attack foreign bodies. As a result, immune cells are never recruited to the site of implantation and therefore cannot harm the developing fetus.

The study, funded by grants from the National Institutes of Health and the American Cancer Society, appears in the June 8 issue of Science.

A central feature of the body's natural immune defense against transplanted foreign tissues and pathogens is the production of chemokines as a result of the local inflammatory response. The chemokines recruit various kinds of immune cells, including activated T cells, which accumulate and attack the tissue or pathogen. The chemokine-mediated recruitment of activated T cells to sites of inflammation is an integral part of the immune response.

During pregnancy however, the foreign antigens of the developing fetus and the placenta come into direct contact with cells of the maternal immune system, but fail to evoke the typical tissue rejection response seen with organ transplants.

Several years ago, Erlebacher and his research team found that T cells, poised to attack the fetus as a foreign body, were somehow unable to perform their intended role. The finding prompted the researchers to wonder if perhaps there was some sort of barrier preventing the T cells from reaching the fetus. They turned their attention to studying the properties of the decidua, the specialized structure that encases the fetus and placenta, and there, in a mouse model, they found new answers.

The research team has discovered that the onset of pregnancy causes the genes that are responsible for recruiting immune cells to sites of inflammation to be turned off within the decidua. As a result of these changes, T cells are not able to accumulate inside the decidua and therefore do not attack the fetus and placenta.

Specifically, they revealed that the implantation of an embryo changes the packaging of certain chemokine genes in the nuclei of the developing decidua's stromal cells. The change in the DNA packaging permanently deactivates, or "silences," the chemokine genes. Consequently, the chemokines are not expressed and T cells are not recruited to the site of embryo implantation.

Also of note, the observed change in the DNA packaging was a so-called 'epigenetic' modification, meaning a modification that changes gene expression without the presence of a hereditable gene mutation.

"These findings give insight into mechanisms of fetal-maternal immune tolerance, as well as reveal the epigenetic modification of chemokine genes within tissue stromal cells as a modality for limiting the trafficking of activated T cells," Dr. Erlebacher said. "It turns out that the cells that typically secrete the chemoattractants to bring the T cells to sites of inflammation are inhibited from doing so in the context of the pregnant uterus. The decidua appears instead as a zone of relative immunological inactivity."

Inappropriate regulation of this process, Dr. Erlebacher explained, could cause inflammation and the accumulation of immune cells at the maternal-fetal interface, which could lead to complications of human pregnancy, including preterm labor, spontaneous abortion and preeclampsia.

Erlebacher and his team will next look to see if these epigenetic modifications are also present within the human decidua, and whether the failure to generate them appropriately is associated with complications of human pregnancy. He explained that the study's findings also raise the possibility that the same kind of mechanism could enhance a tumor's ability to survive inside its host. The findings could have implications for autoimmune diseases, organ transplantation and cancer, as well as pregnancy.

"This is a very exciting finding for us because it gives a satisfying explanation for why the fetus isn't rejected during pregnancy, which is a fundamental question for the medical community with clear implications for human pregnancy," Dr. Erlebacher said. "It also reveals a new modality for controlling T cell trafficking in peripheral tissues that could provide insight into a myriad of other conditions and diseases."


'/>"/>
Contact: Jessica Guenzel
jessica.guenzel@nyumc.org
212-404-3591
NYU Langone Medical Center / New York University School of Medicine
Source:Eurekalert

Related biology news :

1. Speeding up drug discovery with rapid 3-D mapping of proteins
2. La Jolla Institute discovery could lead to new way to screen drugs for adverse reactions
3. A whale of a discovery: New sensory organ found in rorqual whales
4. Novel discovery by NUS scientists paves the way for more effective treatment of cancers
5. Discovery of mechanisms predicting response to new treatments in colon cancer
6. DNA barcoding verified the discovery of a highly disconnected crane fly species
7. Understanding the RNAi Reagents Market Overlap with Drug Discovery and Therapeutic Development is Critical for Pharmaceutical Leaders
8. Discovery of plant proteins may boost agricultural yields and biofuel production
9. Discovery of a new family of key mitochondrial proteins for the function and viability of the brain
10. Bacteria discovery could lead to antibiotics alternatives
11. Discovery reveals chromosomes organize into yarns
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... 8, 2016  Singulex, Inc., the leader in Next ... into a license and supply agreement with Thermo Fisher ... provides Singulex access to Thermo Scientific BRAHMS PCT (Procalcitonin), ... is used to diagnose systemic bacterial infection and sepsis ... to aid in assessing the risk of critically ill ...
(Date:12/7/2016)... Dec. 7, 2016   Avanade is helping ... One teams in history, exploit biometric data in order ... and maintain the competitive edge against their rivals after ... Avanade has worked with Williams during the ... biometric data (heart rate, breathing rate, temperature and peak ...
(Date:12/6/2016)... Valencell , the leading innovator in ... a third consecutive year of triple digit growth for ... with a 360 percent increase in companies who have ... driven by sales of its wrist and ear Benchmark™ ... technology for hearables for fitness and healthcare applications. ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... ... 2016 , ... Aditya Humad, Acting CFO of AxioMed and Managing Partner of ... States, Axiomed is now gaining interest from Silicon Valley. “It was satisfying to complete ... on to say that, “We expect interest to continue to rise as AxioMed completes ...
(Date:12/9/2016)... , Dec. 9, 2016 /PRNewswire/ - Portage Biotech Inc. ... PBT.U), is pleased to announce that Biohaven has issued ... New Haven, Connecticut (PRWEB) Dec 9, 2016 ... "Biohaven") announced today that the U.S. Food and Drug ... request covering its drug candidate BHV-0223, an orally dissolving ...
(Date:12/8/2016)... ... December 08, 2016 , ... Lajollacooks4u, San Diego’s premier team building events ... building events, new program offerings and company expansion. , This is largely ... include groups of over 30 people. Ever since, Lajollacooks4u has seen significant demand for ...
(Date:12/8/2016)... , Dec. 8, 2016  Biotheranostics today ... the role of the Breast Cancer Index (BCI) ... breast cancer are most at-risk for disease recurrence ... include results from three studies advancing the understanding ... related to tumor biology and inform decisions related ...
Breaking Biology Technology: