Navigation Links
New discovery on how skin cells form 'bridges' paves the way for advances in wound healing
Date:12/13/2013

A team of researchers from the National University of Singapore (NUS) have discovered that outer skin cells are able to unite to form suspended "bridges" during wound healing. The new findings will pave the way for tissue engineering, such as the design of artificial skin, and better wound treatment.

Led by Professor Lim Chwee Teck from the Mechanobiology Institute (MBI) at NUS and Departments of Biomedical Engineering and Mechanical Engineering at the NUS Faculty of Engineering, and Professor Benoit Ladoux from MBI and Institut Jacques Monod, the scientists discovered how skin cells can migrate over regions devoid of support from the extracellular matrix, which are structural proteins that allow cells to adhere to. These research findings were first published online in the leading scientific journal Nature Materials on 2 December 2013.

How human outer skin cells form suspended multicellular "bridges"

Using microfabricated technology, the team found that layers of human outer skin cells, known as keratinocytes, are able to form suspended multicellular "bridges" over regions devoid of extracellular matrix support. Migrating keratinocytes are able to move forward as a united and homogenous collection of cells to form a protective barrier over a wounded area. Eventually, these cells come together to form suspended "bridges" over regions which are not conducive for cell adhesion. It was previously not understood how this healing process, known as "re-epithelialization", could occur over a wound bed that did not provide a homogeneous coating of extracellular matrix for cells to migrate on.

The researchers also found out that the suspended cell sheet is created through the build-up of large-scale tension activated by acto-myosin, a kind of motor protein that can cause contraction in cells. They found the cell sheet to be elastic-like in behavior, which partly explained its ability to form multicellular bridges. This is not seen in other cell types which tend to be more fluid-like.

Next steps in tissue mechanobiology research

Commenting on their study, Prof Lim said, "We need to conduct an in-depth study of the various factors regulating wound healing so that we can better understand the process of tissue repair and regeneration. Our study will hopefully pave the way for designing better alternatives that can overcome the current limitations in the field of skin tissue engineering and promote satisfactory skin regeneration. Some potential applications include treating skin burn wounds as well as characterising the mechanical properties of cell sheets."

Moving forward, the team will continue to push the boundary of tissue mechanobiology research by investigating the physical and mechanical properties of skin cells. This research will enable scientists to have a better understanding of the changes associated with certain skin diseases such as blistering diseases and those that occur during the course of ageing.


'/>"/>

Contact: Kimberley Wang
kimberley.wang@nus.edu.sg
National University of Singapore
Source:Eurekalert

Related biology news :

1. Environment drives genetics in Evolution Canyon; discovery sheds light on climate change
2. CNIO study chosen as discovery of the year in regenerative medicine
3. Canadian researchers lead groundbreaking discovery in deadly childhood cancer
4. Surprising discovery: The skin communicates with the liver
5. Discovery of partial skeleton suggests ruggedly built, tree-climbing human ancestor
6. An important discovery related to anxiety disorders and trauma
7. Unlikely collaboration leads to discovery of gender-bending plant
8. Wellspring Biosciences Founder Publishes In Nature On Discovery of Small Molecule Inhibitors of K-Ras
9. Inovio Pharmaceuticals CEO Receives 2013 Drug Discovery & Achievement Award
10. Missing heat discovery prompts new estimate of global warming
11. Discovery may lead to new treatments for allergic diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... N.Y. , April 11, 2017 ... fingerprints, but researchers at the New York University ... College of Engineering have found that partial similarities ... security systems used in mobile phones and other ... thought. The vulnerability lies in the ...
(Date:4/6/2017)... 6, 2017 Forecasts by Product ... Readers, by End-Use (Transportation & Logistics, Government & Public ... & Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business ... Are you looking for a definitive report on ... ...
(Date:4/5/2017)... , April 5, 2017 Today ... announcing that the server component of the HYPR platform ... for providing the end-to-end security architecture that empowers biometric ... HYPR has already secured over 15 million users ... including manufacturers of connected home product suites and physical ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... DALLAS , Oct. 10, 2017 International research firm ... IoT Strategy, will speak at the TMA 2017 Annual Meeting , ... key trends in the residential home security market and how smart safety ... ... "The ...
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® System which uses ... EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface electromyography (sEMG). The ...
(Date:10/6/2017)... Mass. (PRWEB) , ... October 06, 2017 , ... ... female entrepreneurship within the healthcare and technology sector at their fourth annual Conference ... panels featuring 30 inspiring speakers and the ELEVATE pitch competition showcasing early stage ...
Breaking Biology Technology: