Navigation Links
New discovery in autism-related disorder reveals key mechanism in brain development and disease

A new finding in neuroscience for the first time points to a developmental mechanism linking the disease-causing mutation in an autism-related disorder, Timothy syndrome, and observed defects in brain wiring, according to a study led by scientist Ricardo Dolmetsch and published online yesterday in Nature Neuroscience. These findings may be at the heart of the mechanisms underlying intellectual disability and many other brain disorders.

The present study reveals that a mutation of the disease-causing gene throws a key process of neurodevelopment into reverse. That is, the mutation underlying Timothy syndrome causes shrinkage, rather than growth, of the wiring needed for the development of neural circuits that underlie cognition.

"In addition to the implications for autism, what's really exciting is that we now have a way to get at the core mechanisms tying genes and environmental influences to development and disease processes in the brain," said Dolmetsch, Senior Director of Molecular Networks at the Allen Institute for Brain Science.

"Imagine what we can learn if we do this hundreds and hundreds of times for many different human genetic variations in a large-scale, systematic way. That's what we are doing now at the Allen Institute," Dolmetsch continued.

In normal brain development, brain activity causes branches emanating from neural cells to stretch or expand. In cells with the mutation, these branched extensions, called dendrites, instead retract in response to neural activity, according to this study. This results in abnormal brain circuitry favoring connections with nearby neurons rather than farther-reaching connections. Further, the study identified a previously unknown mode of signaling to uncover the chemical pathway that causes the dendritic retraction.

This finding may have wide-reaching implications in neuroscience, as impaired dendrite formation is a common feature of many neurodevelopmental disorders. Further, the same gene has been implicated in other disorders including bipolar disorder and schizophrenia.

Under Dolmetsch's leadership, the Molecular Networks program at the Allen Institute, one of three major new initiatives announced by the Institute last March, is using similar methods on a grand scale. The Institute is probing a large number of human genetic variations and many pathways in the brain to untangle the cellular mechanisms of neurodevelopment and disease. In addition to identifying the molecular and environmental rules that shape how the brain is built, the program will create new research tools and data sets that it will share publicly with the global research community.

Timothy syndrome is a neurodevelopmental disorder associated with autism spectrum disorders and caused by a mutation in a single gene. In addition to autism, it is also characterized by cardiac arrhythmias, webbed fingers and toes, and hypoglycemia, and often leads to death in early childhood.

Contact: Steven Cooper
Allen Institute for Brain Science

Related biology news :

1. Discovery of Africa moth species important for agriculture, controlling invasive plants
2. Discovery may pave way to genetically enhanced biofuel crops
3. LSUHSC research discovery provides therapeutic target for ALS
4. Discovery of pathway leading to depression reveals new drug targets
5. Discovery of 100 million-year-old regions of DNA shows short cut to crop science advances
6. Discovery of molecular pathway of Alzheimers disease reveals new drug targets
7. The Journal of Biological Chemistry commemorates an important 1987 discovery
8. GW Research chosen as paper of the week for blood coagulation discovery
9. NIH-funded genetic sequencing tool speeds drug discovery, disease diagnostics
10. Discovery of reprogramming signature may help further stem cell-based regenerative medicine research
11. King Richard III search in new phase after discovery has potential to rewrite history
Post Your Comments:
(Date:11/30/2015)... Nov. 30, 2015  BIOCLAIM announced today that ... year,s Fierce Innovation Awards:  Healthcare Edition, an awards ... , FierceHealthcare , and ... finalist in the category of "Privacy and Cybersecurity." ... --> Photo - ...
(Date:11/26/2015)... Nov. 26, 2015 Research and Markets ( ... "Capacitive Fingerprint Sensors - Technology and Patent Infringement Risk ... --> --> Fingerprint sensors using ... smartphones. The fingerprint sensor vendor Idex forecasts an increase ... in mobile devices and of the fingerprint sensor market ...
(Date:11/20/2015)... NXTD ) ("NXT-ID" or the ... mobile commerce market and creator of the Wocket® smart ... recently interviewed on The RedChip Money Report ... on Bloomberg Europe , Bloomberg Asia, Bloomberg Australia, ... NXTD ) ("NXT-ID" or the "Company"), a biometric authentication ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... ... November 30, 2015 , ... Global Stem Cells Group ... professionals from Central America and abroad for the first Iberoamerican Convention on Aesthetic ... 17-19, 2016. Testart will present and discuss new trends in anti-aging stem cell ...
(Date:11/30/2015)... ... November 30, 2015 , ... Global Stem Cells Group announced ... new closed system for isolating adipose-derived stem cells. The announcement starts a new phase ... tissue. SVF is a component of the lipoaspirate obtained from liposuction of excess adipose ...
(Date:11/30/2015)... MIAMI (PRWEB) , ... November 30, 2015 , ... ... opening of a new, Good Manufacturing Practice (GMP) 10000 in the Santiago Marriott. ... technologies available, and is operated by a world-class team of qualified medical researchers ...
(Date:11/30/2015)... ... November 30, 2015 , ... Global Stem Cells Group announced the opening of a ... of Arica and Iquique in northern Chile. The facilities are part of GSCG’s expansion efforts ... protocols and techniques in stem cell medicine to patients from around the world. , The ...
Breaking Biology Technology: