Navigation Links
New discoveries about brain-hand connection sought to improve therapies, treatments, prosthetics
Date:3/21/2012

Research at Arizona State University and Columbia University to better understand the intricate sensory and cognitive connections between the brain and the hands has won support from the National Science Foundation. New discoveries about such connections could benefit people with neurological disorders such as Parkinson's disease and cerebral palsy, and those who need prosthetic hands.

The NSF has awarded a $640,000 grant to fund a research collaboration between Marco Santello, an ASU professor of biomedical engineering, and Columbia University scientist Andrew Gordon to expand their studies in this area.

Santello is also interim director of the School of Biological and Health Systems Engineering, one of ASU's Ira A. Fulton Schools of Engineering. Gordon is a professor of movement science in the Behavioral Science department in Columbia's Teachers College, where he coordinates the Kinesiology program.

The two have worked together for several years in pursuit of deeper knowledge about interactions between sensory feedback and motor actions involved in control of the hand.

In their current project they're seeking to determine the neural mechanisms that control learning and planning of the grasping and manipulation of objects.

They're examining the visual cues people use to assess object properties before they grasp or otherwise manipulate objects. In addition to using cues such as object shape or density, people often use memory of similar actions performed in the past.

"We can pick up these cues, and we can predict the result of our actions on an object, but we don't know exactly how the brain does this," Santello says.

Santello's focus is on neural control of the hand and the workings of senses such as vision and touch. By manipulating these senses in people with normal brain, hand and muscle functions, Santello studies what causes the performance of an action that is easy under normal conditions to become difficult. This allows him to identify what impact a specific sense has on how the brain controls the hands.

In his experiments, he imposes sensory deficits on test subjects, using goggles to block vision at selected times during the manipulation to interfere with the subjects' abilities to learn and execute grasping tasks. "We want to understand what aspects of visual feedback help the brain to successfully control grasping of an object and store a memory representation of that action," he explains.

Gordon's does cerebral palsy research. His related collaborative work with Santello focuses on cognitive aspects of the interaction between the brain and the hands, assessing the information the brain gains and processes from sensing the shapes of objects and exploring the role of memory of past actions.

"It's important to discern the basic mechanisms of storing the memory of recently performed actions, of planning future actions and integrating sensory feedback in healthy individuals, so that we might be better able to understand and treat neurological or musculoskeletal disorders," Santello says.

"In particular, understanding how we integrate 'what we know' from prior manipulations with an object and 'what we see' is crucial." Gordon says. "This is all the more important when our senses, and thus our ability to create sensory memories, is impaired, as is often the case in cerebral palsy."

Knowledge gained by such research can also be applied to improving neuroprosthetics. Current technology is able to provide extremely sophisticated artificial hands, but controlling the hands remains a challenge.

"The more we understand about the high- level processing that the brain has to go through to plan an action, the closer we will be to building more intelligent prosthetic systems that are capable of more human-like performance," Santello says.

Like Gordon, Santello has expertise in kinesiology the study of movement with a focus on kinematics of the hand, involving how the hand is shaped and how it performs grasping and related actions.

He began conducting hand research while working as a post-doctoral researcher at University of Minnesota, where he met Gordon, who had just completed his post-doctoral research there.

In the past eight years, they have expanded research into the workings of physical motor skills by incorporating recent advances in knowledge of biomechanics, neurophysiology and psychology.

Santello and Gordon now examine not only how objects are grasped, but look at why people choose to grasp an object in the ways they do.

By taking decision-making functions into account, they're trying to provide a more comprehensive view of the brain-hand relationship how, for instance, the brain and hand work together to create a memory of the position and force necessary to manipulate particular objects.


'/>"/>

Contact: Joe Kullman
joe.kullman@asu.edu
480-965-8122
Arizona State University
Source:Eurekalert

Related biology news :

1. Scripps Research discoveries lead to newly approved drug for infant respiratory distress syndrome
2. New discoveries in cell aging
3. Electronic infrastructures accelerate biodiversity discoveries
4. Register now! Boston meeting will showcase latest aging discoveries
5. New discoveries on the state of hemoglobin in living red blood cells
6. New discoveries in genetics of lung health
7. Breakthrough lights way for RNA discoveries
8. Grants awarded to help bring promising bioscience discoveries to market
9. Discoveries in mitochondria open new field of cancer research
10. Drugs from the sea: New discoveries in marine biomedicine
11. Researcher to present discoveries on medical uses of ultrasound to Londons Royal Society
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/29/2016)... , March 29, 2016 ... "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased to ... ink used in a variety of writing instruments, ensuring ... of originally created collectibles from athletes on LegacyXChange will ... analysis of the DNA. Bill Bollander ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
(Date:3/21/2016)... Unique technology combines v ... security   Xura, Inc. ... digital communications services, today announced it is working alongside ... customers, particularly those in the Financial Services Sector, the ... within a mobile app, alongside, and in combination with, ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica delle ... people with peritoneal or pleural mesothelioma. Their findings are the subject of a new ... , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue of mesothelioma ...
(Date:6/23/2016)... Md. , June 23, 2016 A person ... from the crime scene to track the criminal down. ... the U.S. Food and Drug Administration (FDA) uses DNA evidence ... Sound far-fetched? It,s not. The FDA ... sequencing to support investigations of foodborne illnesses. Put as simply ...
(Date:6/23/2016)... June 23, 2016   EpiBiome , a precision ... million in debt financing from Silicon Valley Bank (SVB). ... and to advance its drug development efforts, as well ... "SVB has been an incredible strategic partner ... a traditional bank would provide," said Dr. Aeron ...
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
Breaking Biology Technology: