Navigation Links
New details on microtubules and how the anti-cancer drug Taxol works
Date:5/22/2014

A pathway to the design of even more effective versions of the powerful anti-cancer drug Taxol has been opened with the most detailed look ever at the assembly and disassembly of microtubules, tiny fibers of tubulin protein that form the cytoskeletons of living cells and play a crucial role in mitosis. Through a combination of high-resolution cryo-electron microscopy (cryo-EM) and new methodology for image analysis and structure interpretation, researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have produced images of microtubule assembly and disassembly at the unprecedented resolution of 5 angstroms (). Among other insights, these observations provide the first explanation of Taxol's success as a cancer chemotherapy agent.

"This is the first experimental demonstration of the link between nucleotide state and tubulin conformation within the microtubules and, by extension, the relationship between tubulin conformation and the transition from assembled to disassembled microtubule structure," says Eva Nogales, a biophysicist with Berkeley Lab's Life Sciences Division who led this research. "We now have a clear understanding of how hydrolysis of guanosine triphosphate (GTP) leads to microtubule destabilization and how Taxol works to inhibit this activity."

Nogales, who is also a professor of biophysics and structural biology at UC Berkeley, as well as an investigator with the Howard Hughes Medical Institute, is the corresponding author of a paper describing this research in the journal Cell. The paper is entitled "High resolution αβ microtubule structures reveal the structural transitions in tubulin upon GTP hydrolysis." Co-authors are Gregory Alushin, Gabriel Lander, Elizabeth Kellogg, Rui Zhang and David Baker.

During mitosis, the process by which a dividing cell duplicates its chromosomes and distributes them between two daughter cells, microtubules disassemble and reform into spindles across which the duplicate sets of chromosomes migrate. For chromosome migration to occur, the microtubules attached to them must disassemble, carrying the chromosomes in the process. The crucial ability of microtubules to transition from a rigid polymerized or "assembled" state to a flexible depolymerized or "disassembled" state - called "dynamic instability" - is driven by GTP hydrolysis in the microtubule lattice. Taxol prevents or dramatically slows down the unchecked cell division that is cancer by binding to a microtubule in such a manner as to block the effects of hydrolysis. However, until now the atomic details as to how microtubules transition from polymerized to depolymerized structures and the role that Taxol can play have been sketchy.

"Uncovering the atomic details of the conformational cycle accompanying polymerization, nucleotide hydrolysis, and depolymerization is essential for a complete description of microtubule dynamics," Nogales says. "Such details should significantly aid in improving the potency and selectivity of existing anti-cancer drugs, as well as facilitate the development of novel agents."

To find these details, Nogales, an expert in electron microscopy and image analysis and a leading authority on the structure and dynamics of microtubules, employed cryo-EM, in which protein samples are flash-frozen at liquid nitrogen temperatures to preserve their natural structure. Using an FEI 300 kV Titan cryo-EM from the laboratory of Robert Glaeser, she and her colleagues generated cryo-EM reconstructions of tubulin proteins whose structures were either stabilized by GMPCPP, a GTP analogue, or were unstable and bound to guanosine diphosphate (GDP), or were bound to GDP but stabilized by the presence of Taxol.

The tubulin protein is a heterodimer consisting of alpha (α) and beta (β) monomer subunits. It features two guanine nucleotide binding sites, an "N-site" on the α-tubulin that is buried, and an "E-site" on the β-tubulin that is exposed when the tubulin is depolymerized. Previous microtubule reconstruction studies were unable to distinguish the highly similar α-tubulin and β-tubulin from each other.

"To be able to distinguish the α-tubulin from the β-tubulin, we had to resolve our images at better than 8 , which most prior cryo-EM studies were unable to do," Nogales says. "For that, we marked the subunits with kinesin, a protein motor that distinguishes between α- and β-tubulin."

Nogales and her colleagues found that GTP hydrolysis and the release of the phosphate (GTP becomes GDP) leads to a compaction of the E-site and a rearrangement of the α-tubulin monomer that generates a strain on the microtubule that destabilizes its structure. Taxol binding leads to a reversal of this E-site compaction and α-tubulin rearrangement that restores structural stabilization.

"Remarkably, Taxol binding globally reverses the majority of the conformational changes we observe when comparing the GMPCPP and GDP states," Nogales says. "We propose that GTP hydrolysis leads to conformational strain in the microtubule that would be released by bending during depolymerization. This model is consistent with the changes we observe upon taxol binding, which dramatically stabilizes the microtubule lattice. Our analysis supports a model in which microtubule-stabilizing agents like Taxol modulate conformational strain and longitudinal contacts in the microtubule lattice."


'/>"/>

Contact: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology news :

1. Scientists uncover startlingly new functional details of common anti-diabetic drugs
2. Report details multiple commercial uses of wireless sensor networks
3. Quantum effects help cells capture light, but the details are obscure
4. Wonder of Nanotechnology details research enabling nanoscale optoelectronic devices
5. Demand for details on food labels includes the good -- and the bad
6. Study details paired risk factors in preeclampsia
7. Biologists uncover details of how we squelch defective neurons
8. Scientists discover new details about rice blast, a deadly plant fungus
9. Prehistoric ghosts revealing new details
10. New book details the biological and cultural diversity of Khawa Karpo, sacred mountain of Tibet
11. Study details essential role of trust in agricultural biotech partnerships
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New details on microtubules and how the anti-cancer drug Taxol works
(Date:11/22/2016)... According to the new market research report "Biometric System Market by Authentication ... (Hardware and Software), Function (Contact and Non-contact), Application, and Region - Global ... from USD 10.74 Billion in 2015 to reach USD 32.73 Billion by ... Continue Reading ... ...
(Date:11/19/2016)... Securus Technologies, a leading provider of civil and criminal ... monitoring, announced today that it has offered a challenge ... technology judge determine who has the largest and best ... platform, and the best customer service. "ICSolutions ... we do – which clearly is not the case ...
(Date:11/16/2016)... Sensory Inc ., a Silicon ... consumer electronics, and VeriTran , a technology ... today announced a global partnership that will provide ... users of mobile banking and mobile payments solutions.  ... which requires no specialized biometric scanners, yet provides ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... , Nov. 30, 2016 /PRNewswire/ - Portage Biotech ... Securities Exchange: PBT.U), is excited to announce the ... focused on developing preclinical ophthalmology assets through proof ... potent anti-inflammatory created by Portage Pharmaceuticals Limited and ... with ocular surface and anterior segment diseases. This ...
(Date:11/30/2016)... -- The Allen Institute for Cell Science has released ... collection of gene edited, fluorescently tagged human induced ... with unprecedented clarity. Distributed through the Coriell Institute ... crucial first step toward visualizing the dynamic organization ... cells healthy and what goes wrong in disease. ...
(Date:11/30/2016)... 2016  Tempus, a technology company focused on ... Abramson Cancer Center have partnered to better determine ... immunotherapy treatment based on next generation genomic and ... a research collaboration, Tempus will provide sequencing and ... data to Penn. Utilizing next-generation sequencing, machine learning ...
(Date:11/30/2016)... , 30. November 2016   Merck ... heute die Unterzeichnung einer Reihe von Vereinbarungen ... wird Evotec AG Screeningleistungen für Mercks Palette ... Der Zugriff auf diese Bibliotheken in Kombination ... einen schnelleren Weg zur Ermittlung und Erforschung ...
Breaking Biology Technology: