Navigation Links
New compound excels at killing persistent and drug-resistant tuberculosis
Date:6/17/2013

LA JOLLA, CA June 17, 2013 An international team led by scientists at The Scripps Research Institute (TSRI), the Howard Hughes Medical Institute and Albert Einstein College of Medicine of Yeshiva University has identified a highly promising new anti-tuberculosis compound that attacks the tuberculosis (TB) bacterium in two different ways.

"These findings represent an effort to help solve one of the major global health crises of our timethe resurgence of TB and its dangerous drug-resistant strains," said Peter G. Schultz, the Scripps Family Chair Professor of Chemistry at TSRI, who was senior author of the study with William R. Jacobs, Jr., member of the Howard Hughes Medical Institute and professor of microbiology & immunology and of genetics at Albert Einstein College of Medicine.

"In cell cultures and in mice, this compound showed powerful activity against ordinary active TB bacteria, non-replicating TB bacteria and even extensively drug-resistant TB strains," said Feng Wang, a member of the Schultz lab at TSRI and first author of the study with Dhinakaran Sambandan of the Jacobs lab and Rajkumar Halder of the Schultz lab.

The paper appears in this week online ahead of print in an Early Edition of the Proceedings of the National Academy of Sciences.

Global Health Crisis

Although isoniazid and rifampin, the two front-line TB drugs, came into use in 1952 and 1967 respectively, new TB infections still occur at the rate of roughly one per second. At any moment about a third of the existing human population is infectedmostly with inactive, latent TB, although active TB still kills over one million people each year. Russia, Africa, China and Southeast Asia have been especially hard hit by the epidemic.

Increased urbanization, public health complacency and immunity-weakening HIV have been major enablers of TB's spread in recent decades. But the bacterium that causes TBMycobacterium tuberculosis (Mtb)also happens to be unusually well adapted for persisting in humans. Among other strategies, it frequently reverts to a dormant, non-replicating state and also creates attack-resistant cell colonies called biofilms, which contain a high proportion of non-replicating TB.

Compared to ordinary, fast-replicating TB, these other forms of TB are much less susceptible to existing drugs. Effective TB therapy thus requires months to years of regular dosing. But many patients quit before completing such long courses of treatment and end up incubating drug-resistant TB strains. Some strains are now "extensively drug-resistant" (XDR) and virtually untreatableand usually fatal.

Killing the Persisters

"The big challenge here has been to find a drug that clears TB infection more quickly, which means it has to be effective against both replicating and non-replicating TB," said Wang, now also a scientist at the California Institute for Biomedical Research (CALIBR), a non-profit organization founded by Schultz for the early-stage development of new medicines.

Most existing TB drugs work poorly against non-replicating TB, having been developed principally for their ability to kill actively replicating TB. Wang therefore set up a different kind of screening testone to detect compounds that block TB's persistence-related ability to form biofilms.

Because experiments with live TB require a special (level 3) biosafety facility, Wang used a related but non-disease-causing mycobacterium for his initial, high-throughput test. Screening a diverse library of 70,000 compounds, he quickly found one, dubbed TCA1, that stood out for its ability to inhibit mycobacterial biofilms.

Tests in Jacobs's biosafety level 3-certified laboratory confirmed that TCA1 also has powerful activity against TB. "Surprisingly, it turned out to kill both non-replicating and replicating TB," Wang said.

In cell culture tests, TCA1 on its own killed more than 99.9% of ordinary, actively replicating TB bacteria within three weeks, and in combination with isoniazid or rifampin, could kill 100% within that period. TCA1 also showed strong effectiveness against drug-resistant TB strains, removing all signs of one common strain within a week when combined with isoniazid. Against a highly fatal "super-bug" strain from South Africa, which resists all conventional TB drugs, the new compound on its own had a kill rate of more than 99.999% within three weeks.

As expected, TCA1 also showed potent effects against non-replicating TB. Tests in mice confirmed TCA1's effectiveness and suggested that the combination of TCA1 and isoniazid could be more powerful than existing drug regimens. TCA1 showed no sign of toxicity or adverse side effects in cell culture and mouse experiments, and also showed almost no tendency to induce drug resistance in TB.

A Complex Mechanism

Working with the laboratories of Gurdyal S. Besra and Klaus Ftterer at the University of Birmingham, UK, Katarina Mikusova at Comenius University in Slovakia, and Kai Johnson at Ecole Polytechnique Fdrale de Lausanne (EPFL) in Switzerland, the team next did structural and biochemical analyses to determine how the new compound kills Mtb so efficiently.

The researchers found it works in an apparently unique way, largely by targeting two Mtb enzymes, one supporting TB replication and the other TB dormancy and persistence. "I don't know of any other antibiotic that kills replicating bacteria through one pathway and non replicating bacteria through another, as this one does," Wang said.

Now funded by the Global Alliance for TB Drug Development, Wang and his colleagues are working to devise improved variants of TCA1. "We already have analogs of TCA1 that are more potent and look very promising as TB drug candidates," said Wang.

Assuming that preclinical tests are completed successfully, he added, the group hopes to find a pharmaceutical company partner to sponsor clinical trials in TB patients.


'/>"/>

Contact: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Source:Eurekalert

Related biology news :

1. First dual-action compound kills cancer cells, stops them from spreading
2. UCI researchers find sea anemone venom-derived compound effective in anti-obesity studies
3. University of Wisconsin chemists find new compounds to curb staph infection
4. The compound in the Mediterranean diet that makes cancer cells mortal
5. Scientists map all possible drug-like chemical compounds
6. Compound stimulates tumor-fighting protein in cancer therapy
7. Beers bitter compounds could help brew new medicines
8. New compound overcomes drug-resistant Staph infection in mice
9. Promising compound restores memory loss and reverses symptoms of Alzheimers
10. A new breed of stable anti-aromatic compound
11. Compound in grapes, red wine could be key to fighting prostate cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/6/2017)... BOULDER, Colo. , Jan. 5, 2017 /PRNewswire/ ... join the "Digital Life Alliance" established by iCarbonX, ... in 2015 to build a "Global Digital Health ... based on a combination of individual,s biological, behavioral ... Under the agreement between the companies, SomaLogic will ...
(Date:1/4/2017)... of attendees at this year,s International Consumer Electronics Show (CES), A&D ... and services, will be featuring its new line of ULTRA CONNECT ... CES Exhibit Suite , the new upper arm and wrist smart blood ... product platform.  Continue Reading ... ...
(Date:1/3/2017)... -- Onitor, provider of digital health technology for consumers, ... biometric data-driven program designed to aid weight loss for ... Consumer Electronics Show (CES) in Las Vegas ... World Health Organization (WHO), have identified lifestyle risks that ... overweight or obese. WHO also states that more people ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... ... January 12, 2017 , ... ... 26-year-old Lisa Rosendahl’s doctors gave her only a few months to live. Now ... combination that has stabilized Rosendahl’s disease and increased both the quantity and quality ...
(Date:1/12/2017)... January 12, 2017 The report "Direct-Fed Microbials Market by Type (Lactic ... and Liquid), and Region - Global Forecast to 2022", published by MarketsandMarkets, the ... and projected to reach USD 1,399.6 Million by 2022, at a CAGR of ... ... MarketsandMarkets Logo ...
(Date:1/11/2017)... ... January 11, 2017 , ... ... clinics in Peru studying the pathogens that cause malaria and tuberculosis. Seeing firsthand ... path of discovery. , Now, as an assistant professor of biology and biotechnology ...
(Date:1/11/2017)... Linda, Ca (PRWEB) , ... January 11, 2017 ... ... resistance in pathogens are observed in clinical settings, it is becoming increasingly clear ... problem. An over-reliance on culture-based methods, the standard in the study of clinical ...
Breaking Biology Technology: