Navigation Links
New clues about the basis of muscle wasting disease
Date:3/12/2010

New findings that shed light on how genetic damage to muscle cell proteins can lead to the development of the rare muscle-wasting disease, nemaline myopathy, are reported today (15 March) in the Biochemical Journal.

Professor Laura Machesky and colleagues from the CRUK Beatson Institute for Cancer Research in Glasgow, tested cultures of muscle cells that displayed mutations of the ACTA1 gene to determine how the mutations affected the biochemical pathways leading to the muscle damage seen in nemaline myopathy.

The ACTA1 gene controls the production of actin, one of the main structural proteins in muscle; mutations in this gene cause 15-20% of cases of nemaline myopathy, an inherited muscle wasting disease similar to muscular dystrophy. Around 140 different mutations of the ACTA1 gene can occur; around a third of these have been biochemically characterized to determine how they affect actin. The mutations cause a wide variety of defects in the biochemical behaviour of actin, but all cause defects in the structure of muscle cells leading to cell and tissue damage and wasting. The researchers discovered that not only do disease-causing mutations in actin lead to weakening of the cell's internal support system, but they also cause changes in the genetic control of other biochemical pathways such as the serum-response factor pathway (SRF). When actin binds to a protein called MAL (originally named megakaryoblastic leukaemia-1) in the cell's nucleus, it switches on the SRF pathway. Actin damaged by mutations doesn't bind properly and the SRF pathway isn't fully activated.

The SRF signalling pathway has a role in muscle development and maintenance. The presence of myopathy-causing mutant actin protein leads to alteration in the pathway that could promote muscle cell degeneration and death or interfere with normal growth and repair. The majority of ACTA1 mutants examined in this study altered the serum response factor signalling pathway, indicating that changes in this pathway may be a major factor in actin-based nemaline myopathy and that this area could be used to develop therapies for patients.

Nemaline myopathies are sometimes called rod body myopathies as the damaged proteins form abnormal thread-like rods, called nemaline bodies, in the muscle cells. There are a number of different types of rod myopathies and they affect both males and females. In the majority of cases (90%) the condition becomes apparent at birth or early childhood, although in very rare cases, it does not become apparent until adulthood. Rod myopathies are estimated to affect 1 in 50,000 individuals.

Commenting on the findings, Professor Machesky said, "More research now needs to be done to determine whether cells in patients have the same changes that we saw in cells in the laboratory. We used the drugs Jasplakinolide and Cytochalasin D, which target the actin-MAL complex, to reverse the effects of the mutant actin - but these drugs are toxic at high levels as they also disrupt the actin filaments and thus the cell's structure. If they could be modified or used at low concentrations they may prove useful leads to drug development."

Marita Pohlschmidt director of research at the Muscular Dystrophy Campaign said, "Nemaline myopathy is a very rare condition that can be difficult to diagnose, because it is caused by a defect in one of several genes. The research presented in this paper is an important contribution to understanding what causes the muscle wasting in about a fifth of all people affected with this devastating condition. The results will be vital for the future development of treatments for those affected by nemaline myopathy."


'/>"/>

Contact: Dianne Stilwell
diannestilwell@me.com
44-020-897-76510
Biochemical Journal
Source:Eurekalert

Related biology news :

1. Study begins to reveal clues to the cause and progression of sepsis
2. Chlamy genome holds clues for renewable energy, the environment and human health
3. How schizophrenia develops: Major clues discovered
4. Tiny fish can yield big clues to Delaware River health
5. Fossils excavated from Bahamian blue hole may give clues of early life
6. Study uncovers clues to cystic fibrosis gene dysfunction and gastrointestinal disease
7. Cornell researcher seeks clues to how tuberculosis infects cells
8. Cognitive, genetic clues identified in imaging study of alcohol addiction
9. HIV isolate from Kenya provides clues for vaccine design
10. Mummy lice found in Peru may give new clues about human migration
11. Tomato pathogen genome may offer clues about bacterial evolution at dawn of agriculture
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... On Monday, the Department of Homeland Security (DHS) issued ... the Biometric Exit Program. The Request for Information (RFI), ... that CBP intends to add biometrics to confirm when ... , in order to deter visa overstays, to ... Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/15/2016)... New York , June 15, 2016 /PRNewswire/ ... a new market report titled "Gesture Recognition Market by ... and Forecast, 2016 - 2024". According to the report, ... USD 11.60 billion in 2015 and is estimated ... reach USD 48.56 billion by 2024.  ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a ... eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research ... by providing practical tips, tools, and strategies for clinical researchers. , “The landscape ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... ... 2016 , ... Charm Sciences, Inc. is pleased to announce ... Research Institute approval 061601. , “This is another AOAC-RI approval of the Peel ... President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably to ...
Breaking Biology Technology: