Navigation Links
New class of nanoparticle brings cheaper, lighter solar cells outdoors
Date:6/9/2014

TORONTO, ON Think those flat, glassy solar panels on your neighbour's roof are the pinnacle of solar technology? Think again.

Researchers in the University of Toronto's Edward S. Rogers Sr. Department of Electrical & Computer Engineering have designed and tested a new class of solar-sensitive nanoparticle that outshines the current state of the art employing this new class of technology.

This new form of solid, stable light-sensitive nanoparticles, called colloidal quantum dots, could lead to cheaper and more flexible solar cells, as well as better gas sensors, infrared lasers, infrared light emitting diodes and more. The work, led by post-doctoral researcher Zhijun Ning and Professor Ted Sargent, was published this week in Nature Materials.

Collecting sunlight using these tiny colloidal quantum dots depends on two types of semiconductors: n-type, which are rich in electrons; and p-type, which are poor in electrons. The problem? When exposed to the air, n-type materials bind to oxygen atoms, give up their electrons, and turn into p-type. Ning and colleagues modelled and demonstrated a new colloidal quantum dot n-type material that does not bind oxygen when exposed to air.

Maintaining stable n- and p-type layers simultaneously not only boosts the efficiency of light absorption, it opens up a world of new optoelectronic devices that capitalize on the best properties of both light and electricity. For the average person, this means more sophisticated weather satellites, remote controllers, satellite communication, or pollution detectors.

"This is a material innovation, that's the first part, and with this new material we can build new device structures," said Ning. "Iodide is almost a perfect ligand for these quantum solar cells with both high efficiency and air stabilityno one has shown that before."

Ning's new hybrid n- and p-type material achieved solar power conversion efficiency up to eight per centamong the best results reported to date.

But improved performance is just a start for this new quantum-dot-based solar cell architecture. The powerful little dots could be mixed into inks and painted or printed onto thin, flexible surfaces, such as roofing shingles, dramatically lowering the cost and accessibility of solar power for millions of people.

"The field of colloidal quantum dot photovoltaics requires continued improvement in absolute performance, or power conversion efficiency," said Sargent. "The field has moved fast, and keeps moving fast, but we need to work toward bringing performance to commercially compelling levels."


'/>"/>

Contact: Dominic Ali
d.ali@utoronto.ca
416-978-6974
University of Toronto
Source:Eurekalert  

Related biology news :

1. American College of Rheumatology releases first classification criteria for polymyalagia rheumatica
2. Desert to Rainforest global classroom links future teachers, classrooms in Phoenix and Panama
3. Weeding out invasive species with classical biological control
4. KIT researchers succeed in realizing a new material class
5. Large, medically important class of proteins starts to yield its secrets
6. Powerful class of antioxidants may be potent Parkinsons treatment
7. Crop Science Society of America presents 2012 class of fellows
8. DNA analysis aids in classifying single-celled algae
9. A class of RNA molecules protects germ cells from damage, Penn vet researchers show
10. 34 ASPB members elected to 2012 class of AAAS Fellows
11. Study confirms prognostic value of new IASLC/ATS/ERS adenocarcinoma sub-classification
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New class of nanoparticle brings cheaper, lighter solar cells outdoors
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
(Date:4/14/2016)... 2016 BioCatch ™, the ... announced the appointment of Eyal Goldwerger as ... Goldwerger,s leadership appointment comes at a time of ... deployment of its platform at several of the world,s ... discerns unique cognitive and physiological factors, is a winner ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys has ... CEO, Barrett Bready , M.D., who returned to ... the original technical leadership team, including Chief Technology Officer, ... Product Development, Steve Nurnberg and Vice President of Software ... the company. Dr. Bready served as CEO ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a ... discoveries to the medical community, has closed its Series ... Matthew Nunez . "We have received a ... the capital we need to meet our current goals," ... provide us the runway to complete validation on the ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... is exhibiting at the Pennsylvania Convention Center and will showcase its product’s latest ... ClinCapture will also be presenting a scientific poster on Disrupting Clinical Trials in ...
(Date:6/23/2016)... 2016  Amgen (NASDAQ: AMGN ) today ... life sciences incubator to accelerate the development of ... space at QB3@953 was created to help high-potential life ... many early stage organizations - access to laboratory infrastructure. ... launched two "Amgen Golden Ticket" awards, providing each winner ...
(Date:6/22/2016)... Research and Markets has announced the addition of the ... The global biomarkers market ... 2013. The market is expected to grow at a five-year compound ... from $50.6 billion in 2015 to $96.6 billion in 2020. ... (2015 to 2020) are discussed. As well, new products approved in ...
Breaking Biology Technology: