Navigation Links
New cellular surprise may help scientists better understand human mitochondrial diseases

A surprising new discovery by the University of Colorado Boulder and the University of California, Davis regarding the division of tiny "power plants" within cells known as mitochondria has implications for better understanding a wide variety of human diseases and conditions due to mitochondrial defects.

Led by CU-Boulder Assistant Professor Gia Voeltz and her team in collaboration with the UC-Davis team led by Professor Jodi Nunnari, the researchers analyzed factors that regulate the behavior of mitochondria, sausage-shaped organelles within cells that contain their own DNA and provide cells with the energy to move and divide. The dynamics of mitochondrion were intimately tied to another cell organelle known as the endoplasmic reticulum, which is a complex network of sacs and tubules that makes proteins and fats.

Voeltz and her colleagues showed that the division of the mitochondria within cells is tied to the point or points where they are physically touching the endoplasmic reticulum in both yeast and mammalian cells. "This is the first time one cell organelle has been shown to shape another," said Voeltz of CU's molecular, cellular and developmental biology department.

A paper on the study was published in the Sept. 2 issue of the journal Science. Co-authors on the study included CU-Boulder graduate student Jonathan Friedman, researcher Matthew West and senior Jared DiBenedetto and UC-Davis postdoctoral researcher Laura Lackner.

Enclosed by membranes, mitochondria vary vastly in numbers per individual cells depending on the organism and tissue type, according to the researchers. While some single-cell organisms contain only a single mitochondrion, a human liver cell can contain up to 2,000 mitochondria and take up nearly one-quarter of the cell space.

Since numerous human diseases are associated with mitochondrial dysfunction, it is important to understand how the division process is regulated, said Voeltz.

Mitochondrial defects have been linked to a wide range of degenerative conditions and diseases, including diabetes, cardiovascular disease and stroke. "Our studies suggest the possibility that human mitochondrial diseases could result from disruption or excessive contact between the endoplasmic reticulum and the mitochondria."

Previous work, including research in Nunnari's lab at UC-Davis, has shown that mitochondrial division is regulated by a protein known as "dynamine-related protein-1" that assembles into a noose-like ligature that tightens around individual mitochondrion, causing it to divide. The team found that several additional proteins linked to mitochondrial division also were found where the endoplasmic reticulum and mitochondria touched.

"The new function for the endoplasmic reticulum expands and transforms our view of cell organization," said Nunnari, a professor and chair of molecular cell biology at UC-Davis. "It's a paradigm shift in cell biology."


Contact: Gia Voeltz
University of Colorado at Boulder

Related biology news :

1. Cellular laser microsurgery illuminates research in vertebrate biology
2. Cellular stress can induce yeast to promote prion formation
3. Researchers provide means of monitoring cellular interactions
4. Development of a FRET sensor for real-time imaging of intracellular redox dynamics
5. How muscle develops: A dance of cellular skeletons
6. Harvard scientists see the early cellular cause of dry eye disease for the first time
7. Thalidomide shows efficacy as adjuvant therapy for hepatocellular carcinoma patients
8. WSU proves extracellular matrix tugging creates come hither stimulus for cancer migration
9. Extracting cellular engines may aid in understanding mitochondrial diseases
10. New book highlights the cellular and molecular determinants of brain wiring
11. Some cancer drugs may block cellular cross talk but not kill cancer cells
Post Your Comments:
Related Image:
New cellular surprise may help scientists better understand human mitochondrial diseases
(Date:11/12/2015)... , Nov. 11, 2015   Growing need ... analytical tools has been paving the way for ... determination of discrete analytes in clinical, agricultural, environmental, ... being predominantly used in medical applications, however, their ... sectors due to continuous emphasis on improving product ...
(Date:11/9/2015)... , Nov. 9, 2015  Synaptics Inc. (NASDAQ: ... today announced broader entry into the automotive market with ... match the pace of consumer electronics human interface innovation. ... are ideal for the automotive industry and will be ... Europe , Japan ...
(Date:10/29/2015)... , Oct. 29, 2015 Daon, a ... that it has released a new version of its ... in North America have already ... v4.0 also includes a FIDO UAF certified server ... already preparing to activate FIDO features. These customers include ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... -- --> --> ... Market by Product & Services (Primer, Probe, Custom Oligos, ... End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - Global ... expected to reach USD 1,918.6 Million by 2020 from ... 10.1% during the forecast period. Browse 183 ...
(Date:11/24/2015)... 24, 2015 --> ... report released by Transparency Market Research, the global non-invasive ... CAGR of 17.5% during the period between 2014 and ... Global Industry Analysis, Size, Volume, Share, Growth, Trends and ... testing market to reach a valuation of US$2.38 bn ...
(Date:11/24/2015)... ... November 24, 2015 , ... In harsh industrial processes, ... for in-line sensors can represent a weak spot where leaking process media is ... retractable sensor housings , which are designed to tolerate extreme process conditions. They ...
(Date:11/24/2015)... 24, 2015 Capricor Therapeutics, Inc. ... the discovery, development and commercialization of first-in-class therapeutics, today ... Officer, is scheduled to present at the 2015 Piper ... a.m. EST, at The Lotte New York Palace Hotel ... . --> . ...
Breaking Biology Technology: