Navigation Links
New cell line should accelerate embryonic stem cell research

Researchers at the University of Washington have successfully created a line of human embryonic stem cells that have the ability to develop into a far broader range of tissues than most existing cell lines.

"These cells will allow us to gain a much greater understanding of normal embryonic development and have the real potential for use in developing ways to grow new tissues and organs for transplantation," said Carol Ware, a professor in the UW Department of Comparative Medicine and lead author of a paper describing the new cell line appearing in the March 10 issue of the journal Proceedings of the National Academy of Sciences.

The cells, called nave embryonic stem cells, normally appear at the earliest stages of embryonic development and so retain the ability to differentiate in all the different types of cells of the human body a capacity called pluripotency.

Researchers had been able to develop naive cells using mouse embryonic stem cells but to create naive human embryonic stem cells has required inserting a set of genes that force the cells to behave like naive cells.

While these "transgenic" cells are valuable research tools, the presence of the artificially introduced genes meant the cells will not develop as normal embryonic cells would nor could they be safely used to create tissues and organs for transplantation.

In an article, Ware and her colleagues from the UW Institute for Stem Cell and Regenerative Medicine describe how they successfully created a line of naive human embryonic stem cells without introducing an artificial set of genes.

They first took embryonic stem cells that are slightly more developed, called primed stem cells, and grew them in a medium that contained factors that switched them back or "reverse toggled" them to the naive state.

They then used the reverse toggled cells to develop a culture medium that would keep them in the naive state and create a stable cell line for study and research.

Then having worked out how to maintain the cells in the naive state, Ware and her colleagues harvested naive cells directly from donated human embryos and cultured them in the maintenance medium to see if they could create a stable cell line that had not undergone reverse toggling. After many tries, they succeeded.

While the "reverse toggled" cells are much easier to create and will prove valuable research tools, Ware said, the cells that were directly derived from embryos are the more important advance because they are more likely to behave, grow and develop as embryonic cells do in nature.

The new cell line is called Elf1: "El" for the Ellison Foundation, a major supporter of the lab's work; "f" for female, the sex of the stem cell; and "1" for first.


Contact: Kim Blakeley
University of Washington - Health Sciences/UW News, Community Relations & Marketing

Related biology news :

1. Study: IOC should ban lead shot to help wildlife, water
2. Gastric banding patients should closely monitor nutrition following surgery
3. Ocean acidification research should increase focus on species ability to adapt
4. Bonefish spawning behavior in the Bahamas surprises researchers, should aid conservation
5. Can (and Should) Retail/Wi-Fi Analytics Help Retailers Survive in the Age of Amazon?
6. Women prescribed combination HRT should use caution when taking apigenin supplement, MU study finds
7. Pain management of hemiplegic shoulder pain post stroke
8. McGill discovery should save wheat farmers millions of dollars
9. Carbon farming schemes should consider multiple cobenefits
10. Risk to consumers from fungal toxins in shellfish should be monitored
11. With early, obvious benefit of a targeted cancer drug, should expensive clinical testing continue?
Post Your Comments:
Related Image:
New cell line should accelerate embryonic stem cell research
(Date:6/9/2016)... 2016 Paris Police Prefecture ... security solution to ensure the safety of people and operations ... the major tournament Teleste, an international technology group ... announced today that its video security solution will be utilised ... up public safety across the country. The system roll-out is ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, Biometrics & ... & Other Service  The latest report from ... of the global Border Security market . Visiongain ... billion in 2016. Now: In November 2015 ... and hardware technologies for advanced video surveillance. ...
(Date:5/12/2016)... , a brand of Troubadour Research & ... Q1 wave of its quarterly wearables survey. A particular ... a program where they would receive discounts for sharing ... "We were surprised to see that so many ... CEO of Troubadour Research, "primarily because there are segments ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... While the ... such as the Cary 5000 and the 6000i models are higher end machines that ... the height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... 23, 2016  The Biodesign Challenge (BDC), a university ... to harness living systems and biotechnology, announced its winning ... New York City . ... showcased projects at MoMA,s Celeste Bartos Theater during the ... MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... June 23, 2016 Apellis Pharmaceuticals, Inc. ... clinical trials of its complement C3 inhibitor, APL-2. ... multiple ascending dose studies designed to assess the ... subcutaneous injection in healthy adult volunteers. ... as a single dose (ranging from 45 to ...
Breaking Biology Technology: