Navigation Links
New biosensors reveal workings of anti-psychotic drugs in the living brain
Date:12/13/2009

Scientists have resolved a question about how a popular class of drugs used to treat schizophrenia works using biosensors that reveal previously hidden components of chemical communication in the brain.

Although delusions and hallucinations characterize the illness, people with schizophrenia also struggle to sustain attention or recall information in a particular order, difficulties that interfere with their ability to hold a job or function well, said Lee Schroeder, a student in the medical scientist training program at the University of California, San Diego.

A class of drugs called atypical neuroleptics has become the most commonly prescribed treatment for schizophrenia, in part for their ability to improve these cognitive functions. How they altered brain chemistry was uncertain, however. Atypical neuroleptics elicit large releases of the neurotransmitter acetylcholine. But they had also been shown to barricade a particular type of receptor on the receiving cell's surface, which would block the message.

The question was, which action prevails? The answer might guide the development of more effective drugs with fewer side effects. "The hunt is now on," said Schroeder, who shares lead authorship on the paper. "What about these drugs helps? That's where our cells come in."

To find out, the team designed biological cells that change color when acetylcholine latches onto this particular class of receptors, called M1. That allowed them to see when M1 receptors received the chemical message, an event neuroscientists had previously been unable to detect in a living, intact brain. "It's a world of signaling between cells that we were blind to before," said David Kleinfeld, professor of physics and member of UC San Diego's center for neural circuits and behavior, who led the collaboration that invented the system.

The team implanted the cells, which they call CNiFERs (pronounced "sniffers"), in rat brains, then stimulated a deeper part of the brain in a way known to release acetylcholine nearby. They saw a color change, evidence that the CNiFERs were working. Then they gave the rats one of two atypical neuroleptics. In both cases, the drug severely depressed the response, indicating that the drugs' receptor-blocking action overrides the increase in acetylcholine they report online in Nature Neuroscience December 13.

CNiFERs could be re-designed to detect the activity of other types of receptors as well, work that is underway. "The technique puts CNiFERs together from easily obtained molecular components," said Quoc-Thang Nguyen, a former research associate in Kleinfeld's lab who shares lead authorship with Schroeder. Nguyen recently founded Femtoscience, a company that has licensed the technology from UC San Diego and will develop it as a way to screen drugs.


'/>"/>

Contact: David Kleinfeld
scinews@ucsd.edu
University of California - San Diego
Source:Eurekalert  

Related biology news :

1. Photonic crystal biosensors detect protein-DNA interactions
2. Study reveals H1N1 unexpected weakness
3. Old hay and Alpine ibex horns reveal how grasslands respond to climate change
4. UBC geneticist reveals molecular view of key epigenetic regulator
5. Study reveals how Arctic food webs affect mercury in polar bears
6. The cause behind the characteristic shape of a long leaf revealed
7. Research reveals exactly how coughing is triggered by environmental irritants
8. Research reveals lipids unexpected role in triggering death of brain cells
9. Tags reveal white sharks have neighborhoods in the north Pacific, say Stanford researchers
10. $15 million stimulus award creates national consortium for revealing scientific resources
11. Inconspicuous leaf beetles reveal environments role in formation of new species
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New biosensors reveal workings of anti-psychotic drugs in the living brain
(Date:6/1/2016)... , June 1, 2016 ... in Election Administration and Criminal Identification to Boost Global ... a recently released TechSci Research report, " Global Biometrics ... Region, Competition Forecast and Opportunities, 2011 - 2021", the ... billion by 2021, on account of growing security concerns ...
(Date:5/20/2016)... 20, 2016  VoiceIt is excited to announce ... By working together, VoiceIt and VoicePass ... and VoicePass take slightly different approaches to voice ... security and usability. ... new partnership. "This marketing and technology ...
(Date:5/12/2016)... 2016 WearablesResearch.com , a brand of ... results from the Q1 wave of its quarterly wearables ... consumers, receptivity to a program where they would receive ... insurance company. "We were surprised to see ... Michael LaColla , CEO of Troubadour Research, "primarily because ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... Brooklyn, NY (PRWEB) , ... June 24, 2016 , ... ... 15mm, machines such as the Cary 5000 and the 6000i models are higher end ... height is the height of the spectrophotometer’s light beam from the bottom of the ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... Apellis Pharmaceuticals, Inc. today announced positive ... its complement C3 inhibitor, APL-2. The trials were ... studies designed to assess the safety, tolerability, pharmacokinetics ... healthy adult volunteers. Forty subjects were ... dose (ranging from 45 to 1,440mg) or repeated ...
Breaking Biology Technology: