Navigation Links
New biological route for swine flu to human infections
Date:12/10/2009

A new biological pathway by which the H1N1 flu virus can make the jump from swine to humans has been discovered by researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley. Early test results indicate that a heretofore unknown mutation in one of the H1N1 genes may have played an important role in transmitting the virus into humans.

"Transmission of influenza viruses into the human population requires surmounting biological barriers to cross-species infection," says biochemist Jennifer Doudna, the principal investigator for this research. "We have identified an adaptive mutation in the swine origin H1N1 influenza A virus - a pair of amino acid variants termed the 'SR polymorphism' that enhance replication, and potentially pathogenesis of the virus in humans."

Doudna, an authority on RNA molecular structures, holds joint appointments with Berkeley Lab's Physical Biosciences Division, and UC Berkeley's Department of Molecular and Cell Biology and Department of Chemistry. She's also an investigator with the Howard Hughes Medical Institute (HHMI). She and Andrew Mehle, a post-doctoral fellow in her research group, have published a paper on this research in the Proceedings of the National Academy of Sciences (PNAS) titled: Adaptive strategies of the influenza virus polymerase for replication in humans."

"Our work highlights the importance of basic research in understanding the processes that control emergence of new influenza viruses," Mehle says. "For example, we now have a new genetic marker to monitor that might help predict the ability of influenza viruses to enter the human population."

One way in which an influenza virus surmounts biological barriers to cross-species infection is through a mutational change in its polymerase, the enzyme that enables the virus to replicate. Identifying such mutations is a key to preventing influenza pandemics or devising new vaccines against infections. When a host is infected with an influenza virus, the polymerase enables the virus to multiply in the host's cells by making copies of the viral genome and directing production of its proteins. Disrupting polymerase function can stop the virus from replicating and thereby reduce the spread and severity of an infection.

"The processes regulating emergence of viruses into the human population involve a complex interplay between virus and host," Doudna says, "and understanding the mechanisms by which influenza viruses acquire the ability to infect multiple species is imperative to controlling future outbreaks. Transmission of the influenza virus into a new species can be influenced by mutations in any of the virus's eight genes."

The influenza polymerase consists of three proteins dubbed PB1, PB2 and PA, that work with viral RNA and nucleoprotein to transcribe and replicate the influenza genome in a host cell. Earlier work by Doudna and Mehle with avian influenza had shown that a mutation in the viral protein PB2 - whereby glutamic acid is replaced at a certain position on the amino acid chain with lysine - enables the virus to jump from birds to humans. When glutamic acid is retained in PB2, its presence suppresses the polymerase from performing in human cells.

"That's why we were surprised when we looked at the gene sequences for the current H1N1 polymerase," Mehle says. "The viruses were replicating in people yet they retained the inhibitory glutamic acid in PB2."

In their investigation, Mehle and Doudna found that the 2009 H1N1 virus has acquired the SR polymorphism in its PB2 protein that enhances polymerase activity in human cells. To confirm that the SR polymorphism was a new pathway for the virus to infect humans, they introduced the mutation into the PB2 protein of the avian influenza. As with swine influenza, the polymerase activity and viral replication of the avian virus became enhanced in humans.

"The SR polymorphism mutation in PB2 accomplishes the same goal as the change from glutamic acid to lysine," Mehle explains. "The fact that all of the 2009 H1N1 isolates contain this second mutation supports the notion that it is important for transmission into humans, although we don't yet know the relative importance of the changes in the polymerase versus mutations elsewhere in the virus."

Mehle and Doudna are now conducting a series of biochemical and structural studies to get a comprehensive understanding of this polymerase mutation and why it evolved. Such studies are necessary before effective new antivirals can be developed.

"We need to identify what is unique about human cells that requires mutations in the influenza polymerase, possibly providing new avenues to exploit in developing therapeutic strategies," Mehle says.


'/>"/>

Contact: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology news :

1. Researchers discover biological basis of bacterial immune system
2. Dr. William Brody, President of the Salk Institute for Biological Studies, Appointed to GenVaults Board of Directors
3. Synthetic cells shed biological insights while delivering battery power
4. Study explores how life experiences contribute to the biological changes of Alzheimers
5. Securing biological select agents and toxins will require developing a culture of trust
6. Individual cells isolated from biological clock can keep daily time, but are unreliable
7. Evolution of the appendix: A biological remnant no more
8. Biological clocks of insects could lead to more effective pest control
9. Microfluidic palette may paint clearer picture of biological processes
10. Iron and biological production in the high-latitude North Atlantic
11. Biological warfare in bacteria offers hope for new antibiotics
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New biological route for swine flu to human infections
(Date:1/15/2016)... 15, 2016 Recent publicized breaches in cyber ... new ways to ensure data security and user authentication ... and Android that ties a user,s mobile ... into a hardware authorization token. Customer service agents who ... on their KodeKey enabled device to verify their identity. ...
(Date:1/11/2016)... , Jan. 11, 2016  higi, the ... nearly 10,000 retail locations, web and mobile, today ... $40 million from existing investors. ... be devoted to further innovate higi,s health platform ... and web portal – including expanding services and ...
(Date:1/7/2016)... LONDON , Jan. 7, 2016 ... demand for biopharmaceutical products such as biologics and ... pressure to reduce healthcare expenditure, growing demand for ... growing aging population. Biosimilars are similar versions of ... with regards to their quality, safety, and efficacy. ...
Breaking Biology News(10 mins):
(Date:2/5/2016)... MANASSAS, Va. , Feb. 5, 2016 ... organization, is poised to assist the medical and life ... concerns around Zika Virus infection.   CDC ... --> Zika virus is a single-stranded ... also includes the West Nile, Dengue and Chikungunya Viruses. ...
(Date:2/5/2016)... -- Amarantus BioScience Holdings, Inc. ... products for Regenerative Medicine, Neurology and Orphan Diseases, announced ... from the US Food and Drug Administration (FDA) for ... granted orphan drug designation (ODD) by the US FDA ... Inc. (OTCQB: AMBS), a biotechnology company ...
(Date:2/4/2016)... -- - New FDA action date of July ... date of July 22, 2016   --> ... 2016   - Lifitegrast has the potential ... the treatment of signs and symptoms of dry eye disease in ... be the only product approved in the U.S. in the past decade indicated for the ...
(Date:2/4/2016)... ... February 04, 2016 , ... ... Forensics Club, takes place February 5-6 at the University’s student center, Kehr ... activities such as workshops and competitions for ample networking, learning and collaborating ...
Breaking Biology Technology: