Navigation Links
New bacteria-resistant materials discovered
Date:8/13/2012

Using state-of-the-art technology scientists at The University of Nottingham have discovered a new class of polymers that are resistant to bacterial attachment. These new materials could lead to a significant reduction in hospital infections and medical device failures.

Medical device associated infections can lead to systemic infections or device failure, costing the NHS 1bn a year. Affecting many commonly used devices including urinary and venous catheters bacteria form communities known as biofilms. This 'strength in numbers approach' protects them against the bodies' natural defences and antibiotics.

Experts in the Schools of Pharmacy and Molecular Medical Sciences, have shown that when the new materials are applied to the surface of medical devices they repel bacteria and prevent them forming biofilms.

The research was led by Professor Morgan Alexander, and Professor Martyn Davies in the School of Pharmacy and Professor Paul Williams in the School of Molecular Medical Sciences. The results of the 1.3m four year research project supported by a Translation Award from the Wellcome Trust, have been published today, Sunday 12 August 2012, in the prestigious academic journal Nature Biotechnology.

The novel materials had to be found using a new technique

Researchers believed there were new materials that could resist bacteria better but they had to find them. This meant screening thousands of different chemistries and testing their reaction to bacteria a challenge which was beyond conventional materials development or any of our current understanding of the interaction of micro-organisms with surfaces.

The discovery has been made with the help of experts from the Massachusetts Institute of Technology (MIT) who initially developed the process by which thousands of unique polymers can now be screened simultaneously.

Professor Alexander said: "This is a major scientific breakthrough we have discovered a new group of structurally related materials that dramatically reduce the attachment of pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli). We could not have found these materials using the current understanding of bacteria-surface interactions. The technology developed with the help of MIT means that hundreds of materials could be screened simultaneously to reveal new structure-property relationships. In total thousands of materials were investigated using this high throughput materials discovery approach leading to the identification of novel materials resisting bacterial attachment. This could not have been achieved using conventional techniques."

These new materials prevent infection by stopping biofilm formation at the earliest possible stage when the bacteria first attempt to attach themselves to the device. In the laboratory experts were able to reduce the numbers of bacteria by up to 96.7per cent compared with a commercially available silver containing catheter and were effective at resisting bacterial attachment in a mouse implant infection model. By preventing bacterial attachment the body's own immune system can kill the bacteria before they have time to generate biofilms.

Ted Bianco, Director of Technology Transfer at the Wellcome Trust, said: "Infections caused by microbial biofilms binding to the surface of implants often cannot be treated with conventional antibiotics. This makes them a significant challenge in patient care, particularly for those with inserted medical devices like catheters, heart valves and prosthetic joints. The discovery of these new polymers is a great example of how advances in materials science are being exploited in our efforts to improve the performance of critical medical components. Just as materials science gave us the non-stick saucepan, so we look forward to the day of the 'non-stick' medical device."

Bacterial attachment and subsequent biofilm formation are key challenges to the performance of medical devices. This is early stage research but the initial results are very promising. The next stage of this research will be to develop the manufacture of these coatings to enable the performance of these materials to be assessed clinically and the inventors are in early stage discussions with a number of medical device companies.


'/>"/>

Contact: Lindsay Brooke
lindsay.brooke@nottingham.ac.uk
44-115-951-5751
University of Nottingham
Source:Eurekalert  

Related biology news :

1. Computer model pinpoints prime materials for efficient carbon capture
2. New materials could slash energy costs for CO2 capture
3. New technique allows simulation of noncrystalline materials
4. Harnessing the Materials Genome Conference
5. Composite nanofibers developed by Penn scientists next chapter in orthopaedic biomaterials
6. Unexpected crustacean diversity discovered in northern freshwater ecosystems
7. University of Alberta led research may have discovered how memories are encoded in our brains
8. Newly discovered foot points to a new kid on the hominin block
9. New immune defense enzyme discovered
10. New genetic mechanism of immune deficiency discovered
11. Housekeeping mechanism for brain stem cells discovered
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New bacteria-resistant materials discovered
(Date:12/6/2016)... Dec. 6, 2016 Valencell , the leading ... has seen a third consecutive year of triple digit ... in 2016 with a 360 percent increase in companies ... increase was driven by sales of its wrist and ... in its technology for hearables for fitness and healthcare ...
(Date:12/2/2016)... India , December 1, 2016 ... Authentication type (Fingerprint, Voice), Future Technology (Iris Recognition ... and Region - Global Forecast to 2021", published ... USD 442.7 Million in 2016, and is projected ... at a CAGR of 14.06%.      ...
(Date:11/30/2016)... Nov. 30, 2016  higi SH llc (higi) ... initiative targeting national brands, industry thought-leaders and celebrity ... respective audiences for taking steps to live healthier, ... in 2012, higi has built the largest self-screening ... 38 million people who have conducted over 185 ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... -- Partnering to fuel Philadelphia,s innovative ... Southeastern Pennsylvania (" Ben Franklin "); ... Blue Cross; and Safeguard Scientifics ("Safeguard") (NYSE: ... million funding initiative over a four year period to ... a burgeoning economic vitality in digital health, Ben ...
(Date:12/7/2016)... ... December 07, 2016 , ... ACEA Biosciences, ... escalation and expansion clinical trial for its lead drug candidate, AC0010, at the ... the trial was to determine the safety, antitumor activity, and recommended phase II ...
(Date:12/7/2016)... ... 07, 2016 , ... Huffman Engineering, Inc. , a ... Certified System Integrator Partner. Huffman Engineering is the only Nebraska-based company recognized ... Integrator Partner certification gives customers confidence that our engineers are fully trained and ...
(Date:12/7/2016)... - OncoQuest Inc. ("OncoQuest"), a biopharmaceutical company focused ... for the treatment of cancer, today announced that ... Program with Cytovance Biologics ( Oklahoma City, ... product. Supported by recent positive interim clinical results ... cancer patients, OncoQuest has engaged Cytovance to establish ...
Breaking Biology Technology: