Navigation Links
New advance announced in reducing 'bad' cholesterol

Scientists from the University of Leicester and University of California Los Angeles (UCLA) have announced a breakthrough advance in tackling dangerous 'bad' cholesterol in the body.

They have filed two patents for developing targeted drugs that would act as a catalyst for lowering levels of 'bad' cholesterol.

Two research papers published by the academics enhance the understanding of the regulation of low-density lipoprotein (LDL) or "bad" cholesterol.

LDL, the so-called "bad" cholesterol, is often linked to medical problems like heart disease, stroke and clogged arteries.

In the body, cells in the liver produce an LDL receptor that binds LDL and removes it from the blood, thereby lowering cholesterol levels.

However, the LDL receptors can be hindered from their mission.

The scientists found that an enzyme called IDOL has been shown to play a key and specific role in the ability of the LDL receptor to bind with 'bad' cholesterol. Therefore targeting the enzyme with drugs would assist the LDL receptors in lowering circulating cholesterol in humans.

Professor John Schwabe, Head of Biochemistry at the University of Leicester, said: "Development of a drug that interferes with IDOL's activity could help lower levels of LDL. Our research has greatly enhanced our understanding of this important process."

Prof John Schwabe, Dr Ben Goult and Dr Louise Fairall at the University of Leicester in collaboration with the University of California Los Angeles (UCLA) published their research in Genes & Development and the Proceeds of the National Academy of Science (PNAS) . The research in the UK was funded by the Wellcome Trust and in the US by NIH and the National Heart Foundation of Australia Overseas Fellowship.

The study in Genes & Development announced the first atomic structural information on IDOL and identified the E2 ligase, UBE2D that works with IDOL to degrade the LDL receptor.

In the second research article published in PNAS, the team elucidated the molecular basis for the stringent specificity of IDOL for the LDL receptor.

Professor Schwabe added: "Remarkably, IDOL only targets three proteins for degradation (all lipoprotein receptors) and this research paper greatly enhances our understanding of this specificity and identifies key residues involved in mediating this interaction.

"A potential future drug that targets IDOL could be prescribed in conjunction with statin drugs, which also cut cholesterol levels by increasing production of the LDL receptor and these two studies make considerable headway towards this. "

The universities have filed 2 patents related to the research findings.

Contact: Prof. John Schwabe
University of Leicester

Related biology news :

1. UCSB scientists make advances in neuroscience and vision research
2. Roche NimbleGen and BGI develop advanced MHC region capture technology for biomedical research
3. Researchers awarded $3.2 million from NIH to pioneer advanced biomolecule discovery technology
4. Bats, dolphins, and mole rats inspire advances in ultrasound technology
5. University Hospitals Case Medical Center unlocks mystery of dystonia with advanced imaging
6. Iowa State engineers establish national panel to advance a carbon negative economy
7. Advanced Medical Care for At-Risk Newborns Nets Economic Benefits
8. Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment
9. An IRB Barcelona project on computational biology receives an ERC Advanced Grant
10. Advance toward a breath test to diagnose multiple sclerosis
11. Leaf litter ants advance case for rainforest conservation in Borneo
Post Your Comments:
Related Image:
New advance announced in reducing 'bad' cholesterol
(Date:6/20/2016)... Securus Technologies, a leading provider of ... safety, investigation, corrections and monitoring announced that after ... secured the final acceptance by all three (3) ... Systems (MAS) installed. Furthermore, Securus will have contracts ... by October, 2016. MAS distinguishes between legitimate wireless ...
(Date:6/7/2016)... 7, 2016  Syngrafii Inc. and San Antonio ... that includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" ... collaboration will result in greater convenience for SACU ... while maintaining existing document workflow and compliance requirements. ... Highlights: ...
(Date:6/1/2016)... -- Favorable Government Initiatives Coupled With Implementation ... to Boost Global Biometrics System Market Through 2021  ... " Global Biometrics Market By Type, By End ... - 2021", the global biometrics market is projected to ... growing security concerns across various end use sectors such ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the ... today the Clinical Reach Virtual Patient Encounter CONSULT module which enables both ... physician and clinical trial team. , Using the CONSULT module, patients and physicians can ...
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... ... 23, 2016 , ... Mosio, a leader in clinical research ... Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits the ... tools, and strategies for clinical researchers. , “The landscape of how patients receive ...
Breaking Biology Technology: