Navigation Links
New UGA invention effectively kills foodborne pathogens in minutes

University of Georgia researchers have developed an effective technology for reducing contamination of dangerous bacteria on food. The new antimicrobial wash rapidly kills Salmonella and E. coli O157:H7 on foods ranging from fragile lettuce to tomatoes, fruits, poultry products and meats. It is made from inexpensive and readily available ingredients that are recognized as safe by the U.S. Food and Drug Administration.

The new technology, which has commercial application for the produce, poultry, meat and egg processing industries, is available for licensing from the University of Georgia Research Foundation, Inc., which has filed a patent application on the new technology.

The Centers for Disease Control and Prevention estimates that, in the U.S. alone, foodborne pathogens are responsible for 76 million illnesses every year. Of the people affected by those illnesses, 300,000 are hospitalized and more than 5,000 die. These widespread outbreaks of food-borne illnesses are attributed, in part, to the fast-paced distribution of foods across the nation. Recently, raw tomatoes caused an outbreak of salmonellosis that sickened more than 300 people in at least 28 states and Canada.

Currently, a chlorine wash is frequently used in a variety of ways to reduce harmful bacteria levels on vegetables, fruits and poultry, but because of chlorine's sensitivity to food components and extraneous materials released in chlorinated water treatments, many bacteria survive. Chlorine is toxic at high concentrations, may produce off-flavors and undesirable appearance of certain food products, and it can only be used in conjunction with specialized equipment and trained personnel. In addition, chlorine may be harmful to the environment.

"We can't rely on chlorine to eliminate pathogens on foods," said Michael Doyle, one of the new technology's inventors and director of UGA's Center for Food Safety. "This new technology is effective, safe for consumers and food processing plant workers, and does not affect the appearance or quality of the product. It may actually extend the shelf-life of some types of produce."

Doyle is an internationally recognized authority on food safety whose research focuses on developing methods to detect and control food-borne bacterial pathogens at all levels of the food continuum, from the farm to the table. He has served as a scientific advisor to many groups, including the World Health Organization, the Food and Drug Administration, the U.S. Department of Agriculture, the U.S. Department of Defense and the U.S. Environmental Protection Agency.

The new antimicrobial technology, developed by Doyle and Center for Food Safety researcher Tong Zhao, uses a combination of ingredients that kills bacteria within one to five minutes from application. It can be used as a spray and immersion solution, and its concentration can be adjusted for treatment of fragile foods such as leafy produce, more robust foods such as poultry, or food preparation equipment and food transportation vehicles.

"The effectiveness, easy storage and application, and low cost of this novel antibacterial make it applicable not only at food processing facilities, but also at points-of-sale and at home, restaurants and military bases. The development of this technology is timely, given the recent, sequential outbreaks of foodborne pathogens," said Gennaro Gama, UGARF technology manager in charge of licensing this technology.


Contact: Kim Osborne
University of Georgia

Related biology news :

1. Undergrad has sweet success with invention of artificial Golgi
2. Prof. David Kisailus studies engineering and invention on the half-shell
3. UTMB inventions win University of Texas System commercialization awards
4. UTMB researchers to be honored at Oscars of invention
5. Mounting evidence shows red wine antioxidant kills cancer
6. New decontamination system kills anthrax rapidly without lingering effects
7. Understanding, combating foodborne pathogens E. coli 0157 and salmonella
8. Researcher discovers pathway plants use to fight back against pathogens
9. Technology uses live cells to detect food-borne pathogens, toxins
10. Can interacting pathogens explain disease patterns?
11. Pathogens use previously undescribed mechanism to sabotage host immune system
Post Your Comments:
(Date:9/24/2015)... , September 24, 2015 ... 25 september 2015 Kerv ( ... digitala finanstjänster, lanserar idag världens första kontaktlösa ... samla in 77 000 GBP för massproduktion ... ) , Kerv-bärare ...
(Date:9/10/2015)... Sept. 10, 2015 Report Details ... quite delivered upon previous expectations of revenues, consumer adoption ... breakthrough year in which wearables begin to achieve that ... of the main reasons is the entrance of Apple ... the SmartWatches market, but the overall size of the ...
(Date:9/9/2015)... VANCOUVER, British Columbia , Sept. 9, 2015 ... achieved numerous organizational and solution-based milestones, furthering the ... the perils of online fraud. NuData ... key in enhancing the company,s growth cycle. The ... machine learning to determine good user behavior from ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... ... October 13, 2015 , ... SonaCare Medical, LLC, ... that it received de novo clearance from the U.S. Food and Drug Administration ... of prostate tissue. Sonablate® is the first High Intensity Therapeutic Ultrasound (HITU) device ...
(Date:10/12/2015)... (PRWEB) , ... October 12, 2015 , ... Spirax Sarco, ... the release of the CSM-C 600 compact clean steam generator . This ... that meets the requirements of HTM2031, HTM2010, and EN285 standards. The CMS-C 600 ...
(Date:10/12/2015)... ANNAPOLIS, Maryland , 12 de octubre de 2015 ... O. Matsui (D-CA) llegó a un récord en el ... tercera edición anual de la International Plasma Awareness Week ... octubre. La IPAW está patrocinada por la Plasma ... estando diseñada para: , Aumentar la ...
(Date:10/12/2015)... Belgium , Oct. 12, 2015 VolitionRx ... from a completed clinical study of its NuQ ® ... in the online issue of Clinical Epigenetics , the ... was conducted in collaboration with Lund ... Roland Andersson , MD, PhD, Professor of Surgery and Vice-Dean, ...
Breaking Biology Technology: