Navigation Links
New NIH awards focus on nanopore technology for DNA sequencing
Date:9/6/2013

The use of nanopore technology aimed at more accurate and efficient DNA sequencing is the main focus of grants awarded by the National Institutes of Health. The grants nearly $17 million to eight research teams are the latest awarded through the National Human Genome Research Institute (NHGRI)'s Advanced DNA Sequencing Technology program, which was launched in 2004. NHGRI is part of NIH.

"Nanopore technology shows great promise, but it is still a new area of science. We have much to learn about how nanopores can work effectively as a DNA sequencing technology, which is why five of the program's eight grants are exploring this approach," said Jeffery A. Schloss, Ph.D., program director for NHGRI's Advanced DNA Sequencing Technology program and director of the Division of Genome Sciences.

Nanopore-based DNA sequencing involves threading single DNA strands through tiny pores. Individual base pairs the chemical letters of DNA are then read one at a time as they pass through the nanopore. The bases are identified by measuring the difference in their effect on current flowing through the pore. For perspective, a human hair is 100,000 nanometers in diameter; a strand of DNA is only 2 nanometers in diameter. Nanopores used in DNA sequencing are 1 to 2 nanometers in diameter.

This technology offers many potential advantages over current DNA sequencing methods, said Dr. Schloss. Such advantages include real-time sequencing of single DNA molecules at low cost and the ability for the same molecule to be reassessed over and over again. Current systems involve isolating DNA and chemically labeling and copying it. DNA has to be broken up, and small segments are sequenced many times. Only the first step of isolating the DNA would be necessary with nanopore technology.

Innovation is crucial in these as well as the other (non-nanopore) studies being funded. For example, one research team eventually hopes to use light to sequence DNA on a cell phone camera chip for under $100.

The new grants are awarded to:

  • University of Illinois, Urbana-Champaign, $2.47 million over four years (pending available funds)
    Principal Investigator: Oleksii Aksimentiev, Ph.D.

    Dr. Aksimentiev and his colleagues plan to use nanopores as sensors. The researchers are studying the effects of combining synthetic nanopores with a light-based technique to control the flow of DNA molecules through the pores. They will use a type of spectroscopy to read the chemical sequence of the DNA.

  • University of New Mexico Health Sciences Center, Albuquerque, $1.35 million over three years (pending available funds)
    Principal Investigator: Jeremy Edwards, Ph.D.

    Dr. Edwards and his colleagues plan to develop innovative molecular biology tools to improve whole-genome sequencing, which entails reading a person's entire genetic blueprint. The researchers hope that better methods of preparing the DNA molecules for sequencing will help scientists identify and link genetic variants to disease and, ultimately, lead to new treatments.

  • University of Washington, Seattle, $3.83 million over four years (pending available funds)
    Principal Investigator: Jens Gundlach, Ph.D.

    The researchers plan to continue developing the use of nanopore DNA sequencing technology involving a type of protein nanopore called MspA. Part of their research will focus on improving the control of movement of DNA through the nanopore and on developing algorithms to identify DNA bases.

  • Columbia University, New York City, $5.25 million over three years (pending available funds)
    Principal Investigators: Jingyue Ju, Ph.D., George M. Church, Ph.D., (Harvard Medical School, Boston) and James John Russo, Ph.D. (Columbia University, New York City)

    Dr. Ju and his colleagues plan to develop a miniaturized electronic system using nanopores to analyze single molecules of DNA in real time. They will construct large arrays of nanopores to create DNA sequencing chips, enabling them to determine DNA bases during a specific biochemical reaction. They hope this technique will enable them to read large sections of DNA more accurately and rapidly than is now possible.

  • Eve Biomedical, Inc., Mountain View, Calif., $493,000 over two years (pending available funds)
    Principal Investigator: Theofilos Kotseroglou, Ph.D.

    Dr. Kotseroglou's research team intends to develop a DNA sequencing system that can sequence an entire human genome for under $100. The overall system will be based on using light to sequence DNA on a cell phone camera chip. For now, his group plans to continue studying ways to accurately read long sections of DNA and develop software tools and bioinformatics.

  • University of Massachusetts, Amherst, $1.07 million over four years (pending available funds)
    Principal Investigator: Murugappan Muthukumar, Ph.D.

    Dr. Muthukumar's research group plans a theoretical approach to study several major challenges underlying nanopore-based DNA sequencing, including slowing down the rate at which DNA molecules flow through the pores, the effects of specific ions, changes in the shape of the DNA molecule and other aspects of the environment.

  • University of North Carolina at Chapel Hill, $2.05 million over four years (pending available funds)
    Principal Investigator: John Michael Ramsey, Ph.D.

    Dr. Ramsey and his co-workers plan to develop a low-cost method for rapidly mapping individual genomes. Such maps will help determine how large mutations in DNA structure contribute to human disease and improve diagnostic testing using genomics.

  • Electronic Biosciences, Inc., San Diego, $239,000
    Principal Investigator: Anna Schibel, Ph.D.

    Dr. Schibel and her co-workers will develop chemical methods to slow the rate by which single-stranded DNA molecules pass through protein nanopores. Such approaches may enable the development of faster, lower-cost DNA sequencing techniques.

The costs of DNA sequencing have greatly declined since 2003, when the genome sequencing performed under the Human Genome Project was completed at a cost of approximately $1 billion. Only a year later, in 2004, sequencing a human genome cost an estimated $10-50 million, thanks to improvements in technologies and tools. By 2009, NHGRI met its goal of producing high-quality human genome sequences at a 100-fold reduction in price, or $100,000. While achieving another 100-fold drop in price has been difficult, sequencing a person's genome today costs about $5,000 to $6,000 (http://www.genome.gov/sequencingcosts).


'/>"/>

Contact: Steven Benowitz
steven.benowitz@nih.gov
301-451-8325
NIH/National Human Genome Research Institute
Source:Eurekalert

Related biology news :

1. MARC travel awards announced for the Grant Writing Seminar & Practical Exercises Workshop
2. MARC travel awards announced for the 2013 Biomedical Engineering Society annual meeting
3. MARC travel awards announced 2013 American Society for Bone and Mineral Research annual meeting
4. International Rett Syndrome Foundation chief science officer receives prestigious military awards
5. Bert L. & N. Kuggie Vallee Foundation announces first recipients of its Young Investigator Awards
6. 2013 medals and awards of the Geological Society of America
7. NREL research earns 3 prestigious R&D 100 Awards
8. OU researchers receive OCAST awards for health research projects
9. National Psoriasis Foundation awards 12 psoriasis and psoriatic arthritis research fellowships
10. Damon Runyon Cancer Research Foundation awards $3.6 M to 9 top young clinical investigators
11. Fondation Leducq awards $6 million grant for global research network for cardiac regeneration
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... 2016 Research and Markets has ... Market 2016-2020"  report to their offering.  , ,     ... The analysts forecast the global multimodal biometrics market ... the period 2016-2020.  Multimodal biometrics is ... as the healthcare, BFSI, transportation, automotive, and government ...
(Date:4/15/2016)... DUBLIN , April 15, 2016 ... of the,  "Global Gait Biometrics Market 2016-2020,"  report ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait ... CAGR of 13.98% during the period 2016-2020. ... movement angles, which can be used to compute ...
(Date:3/31/2016)... 31, 2016   ... the "Company") LegacyXChange is excited to release ... soon to be launched online site for trading 100% ... ) will also provide potential shareholders a sense of ... to an industry that is notorious for fraud. The ...
Breaking Biology News(10 mins):
(Date:5/4/2016)... York, NY (PRWEB) , ... May 04, 2016 ... ... has leveraged recent innovations in biotechnology to help treat hormonal and stress related ... loss, Nutrafol® has captured the hearts of key opinion leaders in the medical ...
(Date:5/3/2016)... ... 03, 2016 , ... Leading CEOs from biotech, pharmaceutical, and ... June 1st at The Four Seasons Hotel Boston. , The Boston CEO Conference ... exclusive access to key decision makers who influence deal making and investment. Attendees ...
(Date:5/3/2016)... 2016 - And Other Rising ... of Those Competitor Biologics  - Biosimilar Drug ... Prospects ,  Who are the most important ... are their sales potentials? Discover, in our updated survey, ... opportunities and revenue forecasting. Visiongain,s ...
(Date:5/2/2016)... YORK , May 2, 2016 ... announces that its technology partner Mannin Research Inc. will ... Ophthalmology (ARVO), which takes place from May 1-5, 2016 ... executives will be meeting with its vendors and research ... explore business development goals and other collaborative opportunities for ...
Breaking Biology Technology: