Navigation Links
Neurotransmitters resarch can promote better drugs for brain disorders
Date:1/7/2014

Jerusalem, January 7, 2014 -- Although drugs have been developed that inhibit the imbalance of neurotransmitters in the brain a condition which causes many brain disorders and nervous system diseases the exact understanding of the mechanism by which these drugs work has not yet been fully explained.

Now, researchers at the Hebrew University of Jerusalem, using baker's yeast as a model, have deciphered the mode by which the inhibitors affect the neurological transmission process and have even been able to manipulate it.

Their work, reported in a recent article in the Journal of Biological Chemistry, raises hopes that these insights could eventually guide clinical scientists to develop new and more effective drugs for brain disorders associated with neurotransmitter imbalance.

All of the basic tasks of our existence are executed by the brain whether it is breathing, heartbeat, memory building or physical movements which depend on the highly regulated and efficient release of neurotransmitters chemicals that act as messengers enabling extremely rapid connections between the neurons in the brain.

When even one part of the everyday "conversation" between neighboring neurons breaks down, the results can be devastating. Many brain disorders and nervous system diseases, including Huntington's disease, various motor dysfunctions and even Parkinson's disease, have been linked to problems with neurotransmitter transport.

The neurotransmitters are stored in the neuron in small, bubble-like compartments, called vesicles, containing transport proteins that are responsible for the storage of the neurotransmitters into the vesicles.

The storage of certain neurotransmitters is controlled by what is called the vesicular monoamine transporter (VMAT), which is known to transport a variety of vital neurotransmitters, such as adrenaline, dopamine and serotonin.

In addition, it can also transport the detrimental MPP+, a neurotoxin involved in models of Parkinson's disease.

A number of studies demonstrated the significance of VMAT as a target for drug therapy in a variety of pathologic states, such as high blood pressure, hyperkinetic movement disorders and Tourette syndrome.

Many of the drugs that target VMAT act as inhibitors, including the classical VMAT2 inhibitor, tetrabenazine. Tetrabenazine has long been used for the treatment of motor dysfunctions associated with Huntington's disease and other movement disorders. However, the mechanism by which the drug affects the storage of neurotransmitters was not fully understood.

The Hebrew University study set out, therefore, to achieve an understanding of the basic biochemical mechanism underlying the VMAT reaction, with a view towards better controlling it through new drug designs.

The research was conducted by in the laboratory of Prof. Shimon Schuldiner of the Hebrew University's Department of Biological Chemistry; Dr.Yelena Ugolev, postdoctoral fellow in the laboratory; and research students Tali Segal, Dana Yaffe and Yael Gros.

To identify protein sequences responsible for tetrabenazine binding, the Hebrew University scientists harnessed the power of yeast genetics along with the method of directed evolution.

Expressing the human protein VMAT in baker's yeast cells confers them with the ability to grow in the presence of toxic substrates, such as neurotoxin MPP+. Directed evolution mimics natural evolution in the laboratory and is a method used in protein engineering.

By using rounds of random mutations targeted to the gene encoding the protein of interest, the proteins can be tuned to acquire new properties or to adapt to new functions or environment.

The study led to identification of important flexible domains (or regions) in the structure of the VMAT, responsible for producing optional rearrangements in tetrabenazine binding, and also enabling regulation of the velocity of the neurotransmitter transporter.

Utilizing these new, controllable adaptations could serve as a guide for clinical scientists to develop more efficient drugs for brain disorders associated with neurotransmitter imbalance, say the Hebrew University researchers.


'/>"/>

Contact: Jerry Barach
jerryb@savion.huji.ac.il
972-258-82904
The Hebrew University of Jerusalem
Source:Eurekalert  

Related biology news :

1. Research shows how PCBs promote dendrite growth, may increase autism risk
2. Interacting mutations promote diversity
3. Single protein promotes resistance to widely used anti-estrogen drugs
4. An economical, effective and biocompatible gene therapy strategy promotes cardiac repair
5. New Genetics educational resource promotes active learning
6. Breast milk promotes a different gut flora growth than infant formulas
7. Antibiotic residues in sausage meat may promote pathogen survival
8. Desert farming forms bacterial communities that promote drought resistance
9. NJIT professor promotes building material of millennium: Autoclave aerated concrete
10. Team finds gene that promotes drug resistance in cancer
11. Dr. Anne Lindblad Promoted To President/CEO Of The EMMES Corporation
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Neurotransmitters resarch can promote better drugs for brain disorders
(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
(Date:6/9/2016)... in attendance control systems is proud to announce the introduction of fingerprint attendance control ... right employees are actually signing in, and to even control the opening of doors. ... ... ... Photo - ...
(Date:6/7/2016)... 2016  Syngrafii Inc. and San Antonio Credit ... includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution ... will result in greater convenience for SACU members ... maintaining existing document workflow and compliance requirements. ... Highlights: ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, ... second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical ... eBook by providing practical tips, tools, and strategies for clinical researchers. , “The ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and Mold) microbial test has received AOAC Research Institute approval 061601. , “This ... introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. ...
(Date:6/23/2016)... 23, 2016   EpiBiome , a precision microbiome ... in debt financing from Silicon Valley Bank (SVB). The ... to advance its drug development efforts, as well as ... "SVB has been an incredible strategic partner to ... traditional bank would provide," said Dr. Aeron Tynes ...
Breaking Biology Technology: