Navigation Links
Neuronal circuits able to rewire on the fly to sharpen senses
Date:12/17/2007

PITTSBURGH Researchers from the Center for the Neural Basis of Cognition (CNBC), a joint project of Carnegie Mellon University and the University of Pittsburgh, have for the first time described a mechanism called dynamic connectivity, in which neuronal circuits are rewired on the fly allowing stimuli to be more keenly sensed. The process is described in a paper in the January 2008 issue of Nature Neuroscience, and available online at http://dx.doi.org/10.1038/nn2030.

This new, biologically inspired algorithm for analyzing the brain at work allows scientists to explain why when we notice a scent, the brain can quickly sort through input and determine exactly what that smell is.

If you think of the brain like a computer, then the connections between neurons are like the software that the brain is running. Our work shows that this biological software is changed rapidly as a function of the kind of input that the system receives, said Nathan Urban, associate professor of biological sciences at Carnegie Mellon.

When a stimulus such as an odor is encountered, many neurons start to fire. When many neurons fire at the same time, the signals can be difficult for the brain to interpret. During lateral inhibition, the stimulated neurons send cease-fire messages to the neighboring neurons, reducing the noise and making it easier to precisely identify a stimulus. This process also facilitates accurate recognition of stimuli in many sensory areas of the brain.

In this project, Urban and colleagues specifically examine the process of lateral inhibition in an area of the brain called the olfactory bulb, which is responsible for processing scents. Until now, scientists thought that the connections made by the neurons in the olfactory bulb were dictated by anatomy and could only change slowly.

However, in this current study, Urban and colleagues found that the connections are, in fact, not set but rather able to change dynamically in response to specific patterns of stimuli. In their experiments, they found that when excitatory neurons in the olfactory bulb fire in a correlated fashion, this determines how they are functionally connected.

The researchers showed that dynamic connectivity allows lateral inhibition to be enhanced when a large number of neurons initially respond to a stimulus, filtering out noise from other neurons. By filtering out the noise, the stimulus can be more clearly recognized and separated from other similar stimuli.

This mechanism helps to explain why you can walk into a room and recognize a smell that seems to be floral. As you continue to smell the odor, you begin to recognize that the scent is indeed flowers and even more specifically is the scent of roses, Urban said. By understanding how the brain does this, we can then apply this mechanism to other problems faced by the brain.

Researchers converted this mechanism into an algorithm and used computer modeling to further show that dynamic connectivity makes it easier to identify and discriminate between stimuli by enhancing the contrast, or sharpness, of the stimuli, independent of the spatial patterns of the active neurons. This algorithm allows researchers to show the applicability of the mechanism in other areas of the brain where similar inhibitory connections are widespread. For example, the researchers applied the algorithm to a blurry picture and the picture appeared refined and in sharper contrast (see figure).


'/>"/>

Contact: Jocelyn Duffy
jhduffy@andrew.cmu.edu
412-268-9982
Carnegie Mellon University  
Source:Eurekalert

Related biology news :

1. Carnegie Mellon scientists investigate initial molecular mechanism that triggers neuronal firing
2. Neuronal conduction of excitation without action potentials based on ceramide production
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Neuronal circuits able to rewire on the fly to sharpen senses
(Date:6/2/2016)... 2016 The Department of Transport Management ... 44 million US Dollar project, for the , ... Personalization, Enrolment, and IT Infrastructure , to ... and implementation of Identity Management Solutions. Numerous renowned international vendors ... Decatur was selected for the most compliant and ...
(Date:6/2/2016)... 2, 2016 Perimeter Surveillance & ... Systems, Physical Infrastructure, Support & Other Service  ... offers comprehensive analysis of the global Border ... generate revenues of $17.98 billion in 2016. ... a leader in software and hardware technologies for advanced ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of ... the latest premium product recently added to the range of products distributed by Ampronix. ... ... ... Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 22, 2016  Amgen (NASDAQ: AMGN ... QB3@953 life sciences incubator to accelerate the ... shared laboratory space at QB3@953 was created to help ... obstacle for many early stage organizations - access to ... sponsorship, Amgen launched two "Amgen Golden Ticket" awards, providing ...
(Date:6/22/2016)... , June 22, 2016  According to ... next generation sequencing (NGS) market include significant efforts ... smaller sequencers.  More accessible and affordable sequencers, say ... growing demand for consumables including sample prep materials.  ... Market for Sample Preparation for Next Generation Sequencing ...
(Date:6/22/2016)... ... 2016 , ... New light-based technologies that facilitate a “look inside” the human ... both compact, wearable devices for point-of-care diagnostics as well as powerful new systems that ... and visionary future directions are detailed in a new open-access article by Antonio Pifferi ...
(Date:6/22/2016)... , June 22, 2016 On Tuesday, ... at 4,843.76, up 0.14%; the Dow Jones Industrial Average advanced ... at 2,088.90, up 0.27%. The gains were broad based as ... Stock-Callers.com has initiated coverage on the following equities: Minerva Neurosciences ... PTLA ), Trevena Inc. (NASDAQ: TRVN ...
Breaking Biology Technology: