Navigation Links
Neurobiology: The logistics of learning
Date:12/20/2013

Learning requires constant reconfiguration of the connections between nerve cells. Two new studies now yield new insights into the molecular mechanisms that underlie the learning process.

Learning and memory are made possible by the incessant reorganization of nerve connections in the brain. Both processes are based on targeted modifications of the functional interfaces between nerve cells the so-called synapses which alter their form, molecular composition and functional properties. In effect, connections between cells that are frequently co-activated together are progressively altered so that they respond to subsequent signals more rapidly and more strongly. This way, information can be encoded in patterns of synaptic activity and promptly recalled when needed. The converse is also true: learned behaviors can be lost by disuse, because inactive synapses are themselves less likely to transmit an incoming impulse, leading to the decay of such connections.

How exactly an individual synapse is altered without simultaneously affecting nearby nerve cells or other synapses on the same cell is a question that is central to Michael Kiebler's research. Kiebler, a biochemist, holds the Chair of Cell Biology in the Faculty of Medicine at LMU. "It is now clear that the changes take place in the cell that is stimulated by synaptic input the post-synaptic cell and in particular in its so-called dendritic spines," he says, "and particles that are known as "neuronal RNA granules" deliver mRNA molecules to these sites". These mRNAs represent the blueprints for the synthesis of the proteins responsible for reconfiguring the synapses. Kiebler's team has developed a model, which postulates that these granules migrate from dendrite to dendrite, and release their mRNAs specifically at sites that are repeatedly activated. This would ensure that the relevant proteins are synthesized only where they are needed within the cell.

In spite of the potential significance of the model, the molecular mechanisms required for its realization have remained obscure. mRNA-binding proteins, including Staufen2 (Stau2) and Barentsz, are essential components of the granules, and Kiebler's team, in collaboration with Giulio Superti-Furga's group (CeMM, Vienna), have now used specific antibodies to isolate and characterize neuronal granules that contain either Stau2 or Barentsz.

Surprising diversity

It has generally been assumed that all neuronal RNA granules have essentially similar compositions. However, the new findings indicate that this is not the case. A comparison between Stau2- and Barentsz-containing granules reveals that they differ in about two-thirds of their proteins. "This suggests that the RNA granules are highly heterogeneous and dynamic in their composition," says Kiebler. "And that makes sense to me, because it would mean that the granules can perform different functions depending on which mRNAs they carry." Furthermore, the researchers have shown that the granules contain virtually none of the factors known to promote the translation of mRNAs into proteins. On the contrary, they include many molecules that repress protein synthesis. This in turn implies that the process of mRNA transport is uncoupled from the subsequent production of the proteins they encode.

In a complementary study, Kiebler's team also characterized the mRNA cargoes associated with the granules. "Until now, none of the RNA molecules present in Stau2-containing granules in mammalian nerve cells had been defined, but we have now been able to identify many specific mRNAs," Kiebler explains. Further experiments revealed that Stau2 stabilizes the mRNAs, allowing them to be used more often for the production of proteins. Moreover, the researchers have shown that specialized structures within these mRNAs, called "Staufen-Recognized Structures" (SRS), are essential for their recognition and stabilization by Stau2. "This allows us to propose a molecular mechanism for RNA recognition for the first time," says Kiebler.

Taken together, the two new papers provide novel insights into the molecular mechanisms that underlie learning and memory. The scientists now want to dissect out the details in future studies. "In the long term, we are particularly interested in the question of how an activated synapse can alter the state of the granules and induce the production of protein," Kiebler notes. It is becoming increasingly clear that RNA-binding proteins play essential roles in nerve cells. Disruption of their action can lead to neurodegenerative diseases and neurological dysfunction. Clearly, not only classical conditions such as Alzheimer's or Parkinson's disease, in which RNA-binding proteins are always involved, but also cognitive defects or age-associated impairment of learning ability must be viewed in this context," Kiebler concludes.


'/>"/>

Contact: Luise Dirscherl
dirscherl@lmu.de
49-892-180-2706
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. Developmental neurobiology: How the brain folds to fit
2. Biologistics: How fast do chemical trains move in living cells?
3. New logistics services that will cut energy consumption and CO2 emissions
4. Majority-biased learning
5. Awake mental replay of past experiences critical for learning
6. Dartmouth researchers are learning how exercise affects the brain
7. Songbirds learning hub in brain offers insight into motor control
8. New Genetics educational resource promotes active learning
9. New model gives hands-on help for learning the secrets of molecules
10. Learning faster with neurodegenerative disease
11. Learning from each other -- growing together
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/14/2016)... , Nov. 14, 2016  Based on ... market, Frost & Sullivan recognizes FST Biometrics ... Award for Visionary Innovation Leadership. FST Biometrics ... biometric identification market by pioneering In Motion ... for instant, seamless, and non-invasive verification. This ...
(Date:6/21/2016)... Columbia , June 21, 2016 ... to the new role of principal product architect ... named the director of customer development. Both will ... chief technical officer. The moves reflect NuData,s strategic ... in response to high customer demand and customer ...
(Date:6/9/2016)... 9, 2016 Paris Police ... video security solution to ensure the safety of people and ... during the major tournament Teleste, an international technology ... services, announced today that its video security solution will be ... back up public safety across the country. The system roll-out ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... , ... December 01, 2016 , ... ... Science Symposium (CSS) and the popularity of US Single Day Events (SDE) to ... in early Summer 2018, in Raleigh, NC. Topics of the pharmaceutical and life ...
(Date:12/2/2016)... , ... December 01, 2016 , ... ... long-term client Nanowear on their recent FDA Class II 510(k) clearance for their ... significant hurdle in commercializing remote cardiac monitoring devices that rely on cloth-based nanosensors. ...
(Date:12/2/2016)... NEW YORK , Dec. 1, 2016   ... liquid photopurification, announced today that the Company has concluded ... has the right for a 90-day period to acquire ... invoice value of approximately USD 3.7 million.  ... an agreement with Tamarack under which Tamarack will seek ...
(Date:11/30/2016)... (PRWEB) , ... November 30, 2016 , ... ... new moving magnet Voice Coil Actuator with a flexure design that ensures high ... life with cost-effective pricing and is ideally suited where extreme precision is required, ...
Breaking Biology Technology: