Navigation Links
Neurobiologist Thomas Jessell to receive $500,000 Gruber Neuroscience Prize
Date:6/3/2014

Thomas Jessell, PhD, the Claire Tow Professor of Motor Neuron Disorders in the Departments of Neuroscience and of Biochemistry and Molecular Biophysics at Columbia University, is the recipient of the 2014 Neuroscience Prize of The Gruber Foundation. Jessell is being honored with this prestigious international award for his seminal work on the development and wiring of spinal cord neurons involved in the control of movement. He is also co-director of the Mortimer B. Zuckerman Mind Brain Behavior Institute, co-director of the Kavli Institute for Brain Science, and a Howard Hughes Medical Institute investigator, all at Columbia.

The award will be presented to Jessell, in Washington, D.C., on Nov. 16 at the 44th annual meeting of the Society for Neuroscience.

"Tom Jessell is one of the world's leaders in the field of developmental neuroscience," says Ben Barres, a member of the Neuroscience Selection Advisory Board. "His research has completely changed our understanding of the mechanisms of neural circuit assembly and function, which, in turn, has helped create a blueprint for the development of potential treatments for a variety of neurodegenerative diseases."

When Jessell began his research more than three decades ago, very little was known about the movement-controlling neural circuitry of the spinal cord, one of the most evolutionarily conserved regions of the central nervous system (CNS). Through a groundbreaking series of studies, Jessell revealed how nave neural cells develop into hundreds of distinct subtypes of motor neurons to form that remarkable circuitry. He was the first scientist to show, for example, that a specific signaling protein known as Sonic hedgehog (Shh) determines the "fate" (subtype identify and role in movement) of many of these cells.

Jessell has also described the precise way in which the distinct subtypes of spinal neurons are connected with each other and how they control the patterned activity of their muscle targets. In addition, he has led the way in demonstrating that Shh and other signaling pathways can be manipulated to influence the process by which stem cells mature into motor neurons. As a result, scientists now have a deeper understanding of how stem cells might be used to treat degenerative spinal cord diseases, including amyotrophic lateral sclerosis (ALS).

Because of Jessell's research, the spinal cord is now considered a model system for studying neural development and is widely used by scientists to better understand the neural circuitry of other, more complex areas of the CNS.

His more recent studies have focused on the mechanisms that wire circuits for limb movement, with the premise that genetic manipulation of individual neuronal classes can begin to uncover principles of circuit function as well as organization. Through the application of molecular information about neuronal identity to monitor, manipulate, and model the activity of specific classes of neurons, his work has also provided systems- and circuit-level insights into the neural control of limb movement.

"Jessell's discoveries have had a profound effect on all areas of neuroscience, which is why it's so fitting that he is being acknowledged and honored with this award," says Carol Barnes, chair of the Selection Advisory Board to the Neuroscience Prize.


'/>"/>

Contact: A. Sarah Hreha
info@gruber.yale.edu
203-432-6231
Yale University
Source:Eurekalert

Related biology news :

1. Neurobiologists find chronic stress in early life causes anxiety, aggression in adulthood
2. Neurobiologist Rodal wins New Innovator award
3. New book on stereology by Mark West is essential reading for neurobiologists
4. Thomas Jefferson University researchers discover new pathways that drive metastatic prostate cancer
5. The IPCC Report on Climate Change - Swedish professor Thomas Sterner selected as 1 of the experts
6. Retention of UC Riverside students in STEM fields receives major financial boost
7. Two Norwegian neuroscientists receive the 2014 Körber European Science Prize
8. MU researcher receives $1.5 Million NIH grant to study vascular functions in Alzheimers
9. NHAES researchers receive $482,500 grant to study nitrogen loss in soils
10. 35 scientists receive early career research program funding
11. IU biologists receive $6.2 million to advance research on bacterial evolution
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/6/2016)... -- Zimmer Biomet Holdings, Inc. (NYSE and SIX: ZBH) (the "Company") ... million principal amount of its 1.414% senior unsecured notes due ... unsecured notes due 2026. The closing of ... to the satisfaction of customary closing conditions.  The notes will ... The Company intends to use the net proceeds from ...
(Date:12/2/2016)... Dec. 1, 2016   SoftServe , a ... BioLock , an electrocardiogram (ECG) biosensor analysis system ... key IoT asset. The smart system ensures device-to-device ... steering wheel and mobile devices to easily ,recognize, ... As vehicle technology advances, so too must ...
(Date:11/29/2016)... Nearly one billion matches per second with DERMALOG,s high-speed AFIS    ... ... DERMALOG is Germany's largest Multi-Biometric supplier: The company's Fingerprint ... ... Multi-Biometric supplier: The company's Fingerprint Identification System is part of an efficient ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... NY (PRWEB) , ... December 06, 2016 , ... ... integrator of custom industrial automation and IT solutions, today announced the company has ... has reliably delivered professionally executed automation and control systems integration services to leading ...
(Date:12/6/2016)... PHOENIX and SAN DIEGO ... (OTCQB:CELZ) announced the appointment of Santosh Kesari , ... Board. Dr. Kesari will leverage his experience in neurology and ... its adult stem cell for treatment of stroke. The AmnioStem ... amniotic fluid, which has previously shown therapeutic activity in ...
(Date:12/6/2016)... ... December 06, 2016 , ... ... on discovery and development of precision treatments for neurodegenerative diseases, today announced ... disease (AD) inhibited the direct neurotoxic effect of prion-like forms of Amyloid ...
(Date:12/5/2016)... , Dec 5, 2016 Research ... "Biomarkers - Technologies, Markets and Companies" to their offering. ... , , ... and their discovery using various -omics technologies such as proteomics and ... and new tests are also based on biomarker. Currently ...
Breaking Biology Technology: