Navigation Links
NeuroPhage discovers GAIM-changing molecules to combat Alzheimer's and related diseases
Date:4/22/2014

Cambridge, MA, April 22, 2014 Researchers from NeuroPhage Pharmaceuticals, Inc. have engineered a series of molecules with the potential to treat most neurodegenerative diseases that are characterized by misfolded proteins, such as Alzheimer's, Parkinson's and Huntington's diseases. These molecules are based on what the Company calls a general amyloid interaction motif, or GAIM, which recognizes a characteristic common to many toxic, misfolded proteins, not just one type of misfolded protein. This approach provides NeuroPhage with an array of therapeutic targets, so that a number of pathologies, such as amyloid beta plaques, tau tangles and alpha-synuclein Lewy bodies, can all be addressed simultaneously with a single drug candidate. In addition, the Company has shown that the GAIM molecules can not only prevent the formation of new toxic protein aggregates but can also clear existing aggregates in the form of both soluble oligomers and insoluble fibers, such as plaques and tangles.

"The research published today describes GAIM, NeuroPhage's unique approach to treat diseases characterized by misfolded proteins. GAIM has the potential to provide a more robust response than previous therapies because it enables the simultaneous targeting of multiple pathologies within a single disease," said Dr. Richard Fisher, Chief Scientific Officer at NeuroPhage.

This novel and revolutionary approach was published online today in the Journal of Molecular Biology. The publication, "A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies," was authored by Rajaraman Krishnan et al. For more information, please visit: http://bit.ly/1lqwIUg.

"Symptoms of neurodegenerative diseases often appear well after the troublesome aggregates have begun to accumulate in the brain. By then, therapies that only target newly forming aggregates are likely to only slow the progression of the disease and are believed to be too late once the aggregates are formed," said Dr. Gregory A. Petsko, Professor of Neurology at Weill Cornell Medical College in New York City, and Tauber Professor of Biochemistry and Chemistry, Emeritus, at Brandeis University in Waltham, Massachusetts. "Therapies based on GAIM would represent a completely new paradigm in the treatment of many neurodegenerative diseases with their potential to ameliorate existing symptoms and prevent disease progression. The hope is this will eventually lead to a real treatment for Alzheimer's disease, but for now, the science behind it is quite compelling."

Researchers used an array of techniques, including X-ray fiber diffraction and nuclear magnetic resonance spectroscopy, to demonstrate the activities of GAIM. They discovered that GAIM effectively binds to multiple types of misfolded proteins during their formation in such a way that prevents new toxic protein aggregates from forming. In addition, upon incubating GAIM with various misfolded proteins, the researchers observed that GAIM disrupted these assemblies of misfolded proteins by causing a conformational change in their structures. This structural change could enable the body's natural disposal mechanism to recognize and clear the misfolded proteins, which in theory, would enable the brain to return to a more normal state. The ability to destabilize pre-existing aggregates of multiple types of misfolded proteins is unique in the field.

The discovery of GAIM has led to the creation of NeuroPhage's lead candidate, NPT088, which is the GAIM motif fused to a portion of a human antibody. The result is a potential therapeutic that can be easily delivered to patients. NeuroPhage has accumulated extensive preclinical data on this candidate, demonstrating its efficacy across disease models of Alzheimer's, Parkinson's and related diseases characterized by aggregation of the tau protein. NeuroPhage expects that NPT088 will be ready for human studies in late 2015.

"With recent advances in imaging agents for beta-amyloid and tau in Alzheimer's disease, we believe we should be able to demonstrate clinical proof of mechanism in a Phase 1b study with NPT088," said Jonathan Solomon, CEO at NeuroPhage. "If successful, we would then have the opportunity to pursue many therapeutic options in several neurodegenerative diseases of protein aggregation."


'/>"/>
Contact: Michelle Avery
mavery@macbiocom.com
781-235-3060
MacDougall Biomedical Communications, Inc.
Source:Eurekalert  

Related biology news :

1. La Jolla Institute discovers new mechanism for unleashing immune system against cancer
2. International consortium discovers 2 genes that modulate risk of breast and ovarian cancer
3. TGen-led study discovers genetic cause of rare type of ovarian cancer
4. Research led by Wayne State discovers single gene in bees separating queens from workers
5. Wayne State discovers potential treatment for better heart health in hemodialysis patients
6. Nature study discovers chromosome therapy to correct a severe chromosome defect
7. Study discovers natural hybridization produced dolphin species
8. A CNIO research team discovers new regulators of the most prevalent liver disease
9. Animal cells can communicate by reaching out and touching, UCSF team discovers
10. Wayne State discovers potential treatment for skin and corneal wound healing in diabetics
11. UCSB biomedical scientist discovers a new method to increase survival in sepsis
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NeuroPhage discovers GAIM-changing molecules to combat Alzheimer's and related diseases
(Date:2/13/2017)... Former 9/11 Commission border counsel and Special Counsel to ... of Identity Strategy Partners, LLP, today releases the following ... Protecting the Nation From Foreign Terrorist Entry Into the ... Trump,s ,Travel Ban, Executive Order gains more notoriety and ... ban, it is important that our national discourse regain ...
(Date:2/8/2017)... Feb. 8, 2017 About Voice Recognition Biometrics ... match it against a stored voiceprint template. Acoustic ... cadence, and tone are compared to distinguish between ... installation, as most PCs already have a microphone ... Voice recognition biometrics are most likely to be ...
(Date:2/8/2017)... , Feb. 7, 2017 The ... largely by the confluence of organizations, desires to ... for knowledge-based systems (password and challenge questions), biometrics ... and government systems. The market is driven by ... demarcation between consumer and enterprise uses cases, with ...
Breaking Biology News(10 mins):
(Date:2/15/2017)... , 15. Februar 2017  Trianni, Inc. („TRIANNI") ... Inc. (Janssen) eine Lizenzvereinbarung über die Verwendung der ... führenden Plattform für die Entdeckung monoklonaler Antikörper. ... neuartiges chimäres Gensegmentdesign aus, das Janssen den ... Antikörpern bietet und das für die schelle Isolierung ...
(Date:2/15/2017)... WASHINGTON, Feb. 15, 2017  Vanda Pharmaceuticals Inc. ... results for the fourth quarter and full year ... an exceptional year for Vanda as we continued ... and secured long-term exclusivity for Fanapt," said Mihael ... addition, our emerging pipeline with important 2017 milestones ...
(Date:2/15/2017)... -- Windtree Therapeutics, Inc. (Nasdaq: WINT ), ... therapies for respiratory diseases, will host a conference call ... EST on Thursday, February 16, 2017 to provide updates ... announced closing of a $10.5 million private offering and ... in the live call and take part in the ...
(Date:2/15/2017)... ... February 15, 2017 , ... ... a strategic partnership that puts Diameter Health technology in the hands of Lantana ... allows providers, exchanges, quality improvement and public health entities – all those mining ...
Breaking Biology Technology: