Navigation Links
Net energy analysis should become a standard policy tool, Stanford scientists say
Date:6/25/2014

Policymakers should conduct "net energy analyses" when evaluating the long-term sustainability of energy technologies, according to new Stanford University research.

Net energy analysis provides a quantitative way to compare the amount of energy a technology produces over its lifetime with the energy required to build and maintain it. The technique can complement conventional energy planning, which often focuses on minimizing the financial cost of energy production, say Stanford researchers.

"The clearest answer to 'why is net energy important?' is that net energy, not money, fuels society," wrote lead author Michael Carbajales-Dale, a research associate in Stanford's Department of Energy Resources Engineering, in the July 2014 issue of Nature Climate Change. "Net energy analysis can identify potential costs and barriers to technology development that
a traditional financial analysis might not."

The report was co-authored by Adam Brandt, an assistant professor in energy resources engineering; Sally Benson a professor in the same department and director of Stanford's Global Climate and Energy Project (GCEP); and Charles Barnhart a postdoctoral scholar at GCEP.

"Put simply, we need to 'spend' energy to 'make' energy," Carbajales-Dale and his colleagues wrote. "The availability of energy fuels economic processes and economic growth. If the energy sector provided only enough energy to fuel its own processes, thereby providing no net energy, it would be of little use to society."

Sustainability studies

The authors cited a recent Stanford analysis, which found that the photovoltaic industry became a net energy provider about two years ago. Another 2013 Stanford study used net energy analysis to assess the long-term sustainability of wind and solar technologies. Calculations revealed that a typical wind turbine generates about 80 times 
more electricity over its lifetime than it consumes during manufacture and installation, and that a solar photovoltaic system produces about 10 times more electricity than it consumes.

According to the authors, net energy analysis can also be used to assess the long-term land and ecosystem impacts of developing energy technologies and resources, such as the Canadian oil sands. A 2013 analysis found that the oil sands industry supplies about five times more energy to society than it consumes, compared to the conventional oil industry, which supplies 10 to 20 times more energy than it uses.

These results suggest that both industries are net energy producers. However, further analysis reveals that oil sands require more energy for their extraction and processing than conventional oil, the Stanford team noted. Over time, "this increased energy intensity results in larger climate impacts per unit of energy supplied from the oil sands," they said.

Financial impacts

Net energy analysis also allows investors to identify potential costs and barriers to the development of new technologies, the authors said. For example, a recent study analyzing the energy balance for large-scale hydrogen production showed that a solar photoelectrochemical cell with 5-percent conversion efficiency requires 
a lifetime of at least five years before the net energy returns are positive.

"Extending the lifetime up to 30 years can yield devices 
that deliver six times as much energy as was used in their manufacture," the authors wrote. "Similar work
 has shown that for grid-scale electricity storage, increasing the number of times that a battery can be charged and discharged is the single-most important improvement that can be made."

Energy analyses can even guide investments away from financially sound but environmentally imprudent technology choices, they said.

"When managing complex systems, it is vitally important to have
the right set of indicators to guide our decisions," the authors concluded. "We would not drive a car without a speedometer, nor fly a plane without an altimeter. Net energy analysis can guide decision-makers at all levels, from households to governments. We believe it is time for policymakers to make greater use of this critical tool."


'/>"/>

Contact: Mark Shwartz
mshwartz@stanford.edu
650-723-9296
Stanford University
Source:Eurekalert  

Related biology news :

1. Story tips From the Department of Energys Oak Ridge National Laboratory, March 2012
2. First complete full genetic map of promising energy crop
3. Polycrystalline diamond drill bits open up options for geothermal energy
4. NOAA science supports New Yorks offshore energy planning
5. Energy requirements make Antarctic fur seal pups vulnerable to climate change
6. Carnegies Greg Asner named Energy/Climate Fellow by US State Department
7. A new dimension for solar energy
8. Is bioenergy expansion harmful to wildlife?
9. University of Minnesota invention helps advance reliability of alternative energy
10. Nanocrystal-coated fibers might reduce wasted energy
11. Europe meets to discuss progress in energy research and development
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Net energy analysis should become a standard policy tool, Stanford scientists say
(Date:4/13/2017)... 2017 According to a new market research report ... Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region ... expected to grow from USD 14.30 Billion in 2017 to USD 31.75 ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... , Apr. 11, 2017 Research and Markets ... 2017-2021" report to their offering. ... The global eye tracking market to grow at a CAGR ... Global Eye Tracking Market 2017-2021, has been prepared based on an ... the market landscape and its growth prospects over the coming years. ...
(Date:4/11/2017)... -- NXT-ID, Inc. (NASDAQ:   NXTD ) ("NXT-ID" ... of independent Directors Mr. Robin D. Richards and ... furthering the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive Officer ... guidance and benefiting from their considerable expertise as we move ...
Breaking Biology News(10 mins):
(Date:4/20/2017)... , April 20, 2017 For ... focuses on novel drug development and clinical research aimed at ... Biostage Inc. (NASDAQ: BSTG), Keryx Biopharmaceuticals Inc. (NASDAQ: KERX), Kite ... ZIOP ). You can access our complimentary research reports ... ...
(Date:4/19/2017)... Linda, Ca (PRWEB) , ... April 18, 2017 , ... ... new technological advances. This webinar, which is part of the Protein and Cell ... Flow Cytometer and outline where this technology fits in current and future applications. ...
(Date:4/19/2017)... ... April 18, 2017 , ... ... . The move comes after the company changed focus to making analytical tools ... brand and our new technology,” says CEO Robert Hart. Founders Bernardo Cordovez, Robert ...
(Date:4/19/2017)... ... 19, 2017 , ... ThermaGenix, the PCR Improvement Company, announces ... several other early achievements at ThermaGenix, including the business formation and licensing agreements, ... will use proceeds from the Series A-1 round to:, , ...
Breaking Biology Technology: