Navigation Links
Nerve cells can work in different ways with same result

Epilepsy, irregular heartbeats and other conditions caused by malfunctions in the body's nerve cells, also known as neurons, can be difficult to treat. The problem is that one medicine may help some patients but not others. Doctors' ability to predict which drugs will work with individual patients may be influenced by recent University of Missouri research that found seemingly identical neurons can behave the same even though they are built differently under the surface.

"To paraphrase Leo Tolstoy, 'every unhappy nervous system is unhappy in its own way,' especially for individuals with epilepsy and other diseases," said David Schulz, associate professor of biological sciences in MU's College of Arts and Science. "Our study suggests that each patient's neurons may be altered in different ways, although the resulting disease is the same. This could be a major reason why doctors have difficulty predicting which medicines will be effective with specific individuals. The same problem could affect treatment of heart arrhythmia, depression and many other neurological conditions."

It turns out, even happy neurons may be happy in their own way. Neurons have a natural electric activity that they are biologically programmed to maintain. If a neuron isn't in that preferred state, the cell tries to restore it. However, contrary to some previous beliefs about neuron functioning, Schulz's research found that two essentially identical neurons can reach the same preferred electrical activity in different ways.

In Schulz's study, individual neurons used different combinations of cellular pores, known as ion channels, to achieve the same end goal of their preferred electrical and chemical balances. Schulz compared the situation to five people in separate rooms being given sets of blocks and told to construct a tower. Each person could devise a different method for constructing the same structure.

Schulz's finding could inform doctor's treatment of epilepsy. In epileptics, the neurons of the brain frequently receive too little stimulation from other neurons. Those under-stimulated epileptic neurons may overcompensate and become too sensitive. Then, when any impulses actually do reach them from other neurons, those hyper-sensitive epileptic neurons may over-react and cause a seizure.

Schulz worked with Satish Nair, professor of electrical and computer engineering in MU's College of Engineering. The collaboration allowed their team to model nerve cell behavior in computer simulations in addition to his physical experiments using crab nervous systems.


Contact: Tim Wall
University of Missouri-Columbia

Related biology news :

1. Penn biologists identify a key enzyme involved in protecting nerves from degeneration
2. Clues to nervous system evolution found in nerve-less sponge
3. New gene mutations linked to ALS and nerve cell growth dysfunction
4. Long-distance distress signal from periphery of injured nerve cells begins with locally made protein
5. MBL scientists discover nerves control iridescence in squid’s remarkable electric skin
6. MRI research sheds new light on nerve fibres in the brain
7. MRI research sheds new light on nerve fibers in the brain
8. Stem cells + nanofibers = Promising nerve research
9. A step forward in regenerating and repairing damaged nerve cells
10. NIH-funded researchers show possible trigger for MS nerve damage
11. OHSU study shows that a molecule critical to nerve cells increases drammatically during hypertension
Post Your Comments:
(Date:4/26/2016)... Research and Markets has announced ... 2016-2020"  report to their offering.  , ,     (Logo: ... analysts forecast the global multimodal biometrics market to ... period 2016-2020.  Multimodal biometrics is being ... the healthcare, BFSI, transportation, automotive, and government for ...
(Date:4/14/2016)... AVIV, Israel , April 14, 2016 ... Behavioral Authentication and Malware Detection, today announced the appointment ... already assumed the new role. Goldwerger,s leadership ... BioCatch, on the heels of the deployment of its ... addition, BioCatch,s behavioral biometric technology, which discerns unique cognitive ...
(Date:3/29/2016)... 2016 LegacyXChange, Inc. (OTC: ... SelectaDNA/CSI Protect are pleased to announce our successful effort ... variety of writing instruments, ensuring athletes signatures against counterfeiting ... from athletes on LegacyXChange will be assured of ongoing ... Bill Bollander , CEO states, "By ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , June 27, 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ... advised by its major shareholders, Clean Technology Fund I, ... United States based venture capital funds which ... Biorem (on a fully diluted, as converted basis), that ... of their entire equity holdings in Biorem to TUS ...
(Date:6/27/2016)... Diego, CA (PRWEB) , ... June 27, 2016 , ... ... solutions for clinical trials, announced today the Clinical Reach Virtual Patient Encounter ... their care circle with the physician and clinical trial team. , Using the CONSULT ...
(Date:6/27/2016)... June 27, 2016  Liquid Biotech ... funding of a Sponsored Research Agreement with The ... cells (CTCs) from cancer patients.  The funding will ... levels correlate with clinical outcomes in cancer patients ... will then be employed to support the design ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
Breaking Biology Technology: