Navigation Links
Nectar: A sweet reward from plants to attract pollinators
Date:3/16/2014

Stanford, CA Evolution is based on diversity, and sexual reproduction is key to creating a diverse population that secures competitiveness in nature. Plants had to solve a problem: they needed to find ways to spread their genetic material. Flying pollinatorsinsects, birds, and batswere nature's solution. Charles Darwin's "abominable mystery" highlighted the coincidence of flowering plant and insect diversification about 120 million years ago and ascribed it to the coordinated specialization of flowers and insects in the context of insects serving as pollen carriers. To make sure the flying pollinators would come to the flowers to pick up pollen, plants evolved special organs called nectaries to attract and reward the animals. These nectaries are secretory organs that produce perfumes and sugary rewards. Yet despite the obvious importance of nectar, the process by which plants manufacture and secrete it has largely remained a mystery. New research from a team led by Carnegie's Wolf Frommer, director of the Plant Biology Department, in collaboration with the Carter lab in Minnesota and the Baldwin lab in Jena, Germany, now identified key components of the sugar synthesis and secretion mechanisms. Their work also suggests that the components were recruited for this purpose early during the evolution of flowering plants. Their work is published March 16 by Nature.

The team used advanced techniques to search for transporters that could be involved in sugar transport and were present in nectaries. They identified the transport protein SWEET9 as a key player in three diverse flowering plant species and demonstrated that it is essential for nectar production.

In specially engineered plants lacking the SWEET9 transporter, the team found that nectar secretion did not occur, but rather sugars accumulated in the stems. Importantly, when they added a copy of the SWEET9 gene, the plants produced more nectar. In parallel, they also identified genes necessary for the production of sucrose, called sucrose phosphate synthase genes, which turned out to also be essential for nectar secretion.

Since sugars are apparently the drivers for secretion of nectary fluids, they uncovered a whole pathway for how sucrose is manufactured in the nectary and then transported into the extracellualar space of nectaries by SWEET9. In this interstitial area the sugar is converted into a mixture of sucrose and other sugars, namely glucose and fructose. In the plants tested, these three sugars comprise the majority of solutes in the nectar, a prerequisite for collection by bees for honey production.

"SWEETs are key transporters for transporting essential nutrients from leaves to seeds. We believe that the nectarial SWEET9 sugar transporter evolved around the time of the formation of the first floral nectaries, and that this process may have been a major step necessary for attracting and rewarding pollinators and thus increasing the genetic diversity of plants," Frommer said.


'/>"/>

Contact: Wolf Frommer
wfrommer@carnegiescience.edu
650-325-1521 x208
Carnegie Institution
Source:Eurekalert

Related biology news :

1. UT Austin engineer converts yeast cells into sweet crude biofuel
2. Are sweetpotato weevils differentially attracted to certain colors?
3. The economically valuable sweet-gum trees: Taxonomy and 9 new combinations
4. Targeting cancers sweet tooth
5. The brain cannot be fooled by artificial sweeteners
6. Carbonation alters the minds perception of sweetness
7. Multiple genes manage how people taste sweeteners
8. Fetal programming of sweet tastes elicited pleasure
9. Subdiaphragmatic vagotomy reduces intake of sweet-tasting solutions in rats
10. Artificial sweetener a potential treatment for Parkinsons disease
11. Sweet news for stem cells Holy Grail
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... The Department of Transport Management (DOTM) ... million US Dollar project, for the , Supply ... Enrolment, and IT Infrastructure , to ... implementation of Identity Management Solutions. Numerous renowned international vendors participated ... was selected for the most compliant and innovative ...
(Date:6/1/2016)... 1, 2016 Favorable Government Initiatives ... and Criminal Identification to Boost Global Biometrics System Market ... TechSci Research report, " Global Biometrics Market By ... and Opportunities, 2011 - 2021", the global biometrics market ... on account of growing security concerns across various end ...
(Date:5/16/2016)... 2016   EyeLock LLC , a market leader ... of an IoT Center of Excellence in ... development of embedded iris biometric applications. EyeLock,s ... and security with unmatched biometric accuracy, making it the ... DNA. EyeLock,s platform uses video technology to deliver a ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... PHILADELPHIA , June 27, 2016  Liquid ... today announced the funding of a Sponsored Research ... study circulating tumor cells (CTCs) from cancer patients.  ... changes in CTC levels correlate with clinical outcomes ... therapies. These data will then be employed to ...
(Date:6/24/2016)... ... 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers use ... 6000i models are higher end machines that use the more unconventional z-dimension of 20mm. ... from the bottom of the cuvette holder. , FireflySci has developed several Agilent ...
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
Breaking Biology Technology: