Navigation Links
National labs leading charge on building better batteries
Date:9/27/2011

Teams at two of the Energy Department's laboratories are making headway on two projects that will enable building a new lithium battery that charges faster, lasts longer, runs more safely, and might also arrive on the market in the not-too-distant future. Lithium batteries are used in a variety of everyday products from laptops to cell phones, but an improved battery could also significantly increase the charge capacity of hybrid electric vehicles, and energy storage systems of wind and solar power generators.

Researchers at Oak Ridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (Berkeley Lab) focused on a key battery component, the anode, where electricity comes out. Most current commercial lithium batteries have anodes made of graphite, a form of carbon. However, scientists at ORNL incorporated a special form of the compound titanium dioxide into the anode instead, and they found significant improvements. At the same level of current, it takes the new ORNL battery just six minutes to be 50 percent charged, while a graphite-based lithium-ion battery would see a mere 10 percent increase in the same timeframe. The new ORNL battery also outperforms faster-charging lithium titanate batteries (which use tiny particles of lithium titanate in the anode in place of graphite to speed charging) and, unlike such batteries, has a sloping discharge voltage that is good for controlling the state of charge.

ORNL's new battery has the potential to be used in a wide range of heavy-duty applications, especially places where increased strength and safety are at a premium such as hybrid electric vehicles, power grids and the energy storage systems of wind and solar power generators. Additional research needs to be performed, but scientists at ORNL believe that if titanium dioxide proves scalable in batteries, they could be on the market within five years.

Berkeley Lab researchers are taking a different approach. They designed a new anode made from a tailored polymer a material made of millions of repeating units that conducts electricity. It also embeds silicon particles, which in turn bind to a lot of lithium ions (much more than graphite anodes can). These improvements give the battery a much greater capacity the ability to store much more energy than current designs. Even better, they maintain that increased capacity after hundreds of charge-discharge cycles.

The better anode built by Berkeley Lab could contribute to lowering the cost and extending the range of electric cars. Researchers say the anode can be built at a comparatively low cost, and in a way that's already compatible with established manufacturing technologies. And they offer that the tailored polymer that makes the battery better could see use in a wide range of other products too.

Thanks to the Energy Department-supported research, bright ideas are becoming better batteries... and hopefully, a brilliant future.


'/>"/>

Contact: Dolline Hatchett
dolline.hatchett@science.doe.gov
202-586-4477
DOE/US Department of Energy
Source:Eurekalert

Related biology news :

1. BIO-key(R) International To Exhibit at Oracle OpenWorld
2. Sentara begins international trial -- open at only 24 US locations
3. UW science photo takes second in national contest
4. Rice University establishes National Corrosion Center
5. 8 National Medals of Science awardees to be honored at gala, then the White House
6. Perinatal Days and International Stillbirth Conference -- Nov.5-7
7. AVS 55th International Symposium & Exhibition, Oct. 19-24
8. Childrens National researchers develop novel anti-tumor vaccine
9. National Science Foundation grants Clemson professors award to develop nanoprobes
10. National Science Foundation grant expands UMCES oyster research
11. Brown University and Women & Infants Hospital expand national childrens study to Bristol County
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)... , April 15, 2016  A new ... make more accurate underwriting decisions in a fraction ... timely, competitively priced and high-value life insurance policies ... screenings. With Force Diagnostics, rapid testing ... lifestyle data readings (blood pressure, weight, pulse, BMI, ...
(Date:4/14/2016)... , April 14, 2016 ... Malware Detection, today announced the appointment of Eyal ... new role. Goldwerger,s leadership appointment comes at ... heels of the deployment of its platform at several ... biometric technology, which discerns unique cognitive and physiological factors, ...
(Date:3/31/2016)... , March 31, 2016   ... ("LegacyXChange" or the "Company") LegacyXChange is excited ... of its soon to be launched online site for ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders a ... DNA technology to an industry that is notorious for ...
Breaking Biology News(10 mins):
(Date:5/2/2016)... NEW YORK , May 2, 2016 ... company announces that its technology partner Mannin Research Inc. ... and Ophthalmology (ARVO), which takes place from May 1-5, ... Research executives will be meeting with its vendors and ... further explore business development goals and other collaborative opportunities ...
(Date:4/29/2016)... ... 30, 2016 , ... The MIT bioLogic design team has won multiple ... bacterial properties can be applied to fabric and formed into living interfaces between body ... to humidity change. The team harvested Natto cells and applied them to fabric with ...
(Date:4/29/2016)... , ... April 29, 2016 , ... ... necessary fundamentals to transform technology into a viable company, CereScan’s CEO, John Kelley, ... Mr. Kelley, a recognized leader and mentor in the Denver area business community, ...
(Date:4/28/2016)... -- The report "Cryocooler Market by Type ... Support, Product Repairs & Refurbishment, Preventive Maintenance, and Customer ... published by MarketsandMarkets, the global market is expected to ... CAGR of 7.29% between 2016 and 2022. ... spread through 159 Pages and in-depth TOC on  "Cryocooler ...
Breaking Biology Technology: