Navigation Links
National Institutes of Health renews successful infectious disease research study
Date:8/15/2011

The National Institute of General Medical Sciences, part of the National Institutes of Health, has renewed funding from its Models of Infectious Disease Agent Study for a research project at the Virginia Bioinformatics Institute at Virginia Tech, led by Stephen Eubank, professor.

Infectious diseases pose one of the most significant threats to public health worldwide. The Models of Infectious Disease Agent Study (MIDAS) is a multi-university research partnership with a mandate to develop computational models or simulations to assist policy makers, public health workers, and other researchers in making better-informed decisions about natural or intentionally caused emerging infectious diseases, and in planning for national emergencies or acts of bioterrorism.

The project, "Synthetic Information Systems for Better Informing Public Health Policymakers," began in 2004 as a five-year project, received two additional years of funding in 2009 from the American Recovery and Reinvestment Act, and will now be supported with approximately $500,000 per year for an additional five years.

"Dr. Eubank and his colleagues have done an outstanding job of advancing the goals of the MIDAS initiative by developing state of the art epidemiological models," said James Anderson, who helps manage the MIDAS program at the National Institutes of Health. "These models helped policymakers evaluate efforts to mitigate the impact of disease outbreaks, such as the 2009 H1N1 flu pandemic. Dr. Madhav Marathe and Dr. Eubank aim to refine the current models in the next phase to produce software tools that will help public health officials detect and respond to disease outbreaks in distinct geographical regions and demographic populations."

The creation of network-based models of infectious disease can help guide the design of targeted intervention strategies to combat the spread of disease. Powerful computer simulations can provide important information before an outbreak actually happens, such as the potential benefits of isolating those infected with a virus and how to optimize the use of antiviral treatments.

To build a detailed model of a population, Eubank and Marathe, who are deputy directors of the Network Dynamics and Simulation Sciences Laboratory (NDSSL), and their colleagues typically start with census information, public surveys, and transportation data, which help provide a realistic picture of the daily activities of simulated people within a population and allow for detailed estimates of social contacts. These models are then combined with other models of people's behavior to demonstrate how social mixing patterns change under different interventions, such as the closing of schools or workplaces. Important information related to a specific infectious disease, such as H1N1 influenza for example, can be added, allowing researchers to pinpoint the best intervention strategies in a variety of situations.

In 2008, MIDAS researchers published a paper in the Proceedings of the National Academy of Sciences that concluded that a timely implementation of targeted household antiviral prevention measures and a reduction in contact between individuals could substantially lower the spread of the disease until a vaccine was available. Intervention methods used were antiviral treatment and household isolation of identified cases, disease prevention strategies and quarantine of household contacts, school closings, and reducing workplace and community contacts.

"Past support from MIDAS has helped us scale our simulations from local to regional and national levels, to understand what details matter to the big picture, and to learn more about the important issues facing public health decision-makers," said Eubank "We've also developed important collaborations with researchers at Northwestern University, the University of Utah, and Clemson University, who will participate in this project. We're thrilled to have the opportunity to carry this research through to the next stage: combining the best research from pure and applied mathematics, epidemiology, physical and social sciences, and computer science into tools that policymakers can and will use routinely to inform their response to infectious disease outbreaks. This is an example of how NDSSL applies advanced computing to bring scientific evidence to bear on understanding the many large, interdependent complex systems that are crucial to modern life."

In addition to Virginia Bioinformatics Institute, research groups from Harvard School of Public Health, the University of Pittsburgh, University of California at Irvine, University of Chicago and Argonne National Laboratory, University of Pennsylvania School of Veterinary Medicine, University of Washington and the Fred Hutchinson Cancer Research Center, Yale University, the University of Texas at Austin, and the Research Triangle Institute are members of the MIDAS team.


'/>"/>

Contact: Tiffany Trent
ttrent@vbi.vt.edu
540-231-6822
Virginia Tech
Source:Eurekalert

Related biology news :

1. BIO-key(R) International To Exhibit at Oracle OpenWorld
2. Sentara begins international trial -- open at only 24 US locations
3. UW science photo takes second in national contest
4. Rice University establishes National Corrosion Center
5. 8 National Medals of Science awardees to be honored at gala, then the White House
6. Perinatal Days and International Stillbirth Conference -- Nov.5-7
7. AVS 55th International Symposium & Exhibition, Oct. 19-24
8. Childrens National researchers develop novel anti-tumor vaccine
9. National Science Foundation grants Clemson professors award to develop nanoprobes
10. National Science Foundation grant expands UMCES oyster research
11. Brown University and Women & Infants Hospital expand national childrens study to Bristol County
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/9/2016)... Inc. (NASDAQ: AWRE ), a leading supplier of biometrics software ... year ended December 31, 2015.  --> ... $6.9 million, an increase of 61% compared to $4.3 million in ... of 2015 was $2.6 million compared to $0.2 million in the ... --> Higher revenue and operating income in the fourth quarter ...
(Date:2/4/2016)... , Feb. 4, 2016 The field ... one of the most popular hubs of the ... and other huge studies of human microbiota, have ... few years, the microbiome space has literally exploded ... research. This report focuses on biomedical aspects ...
(Date:2/3/2016)... , Feb. 3, 2016 ... addition of the "Emotion Detection and ... Learning, and Others), Software Tools (Facial Expression, ... End Users,and Regions - Global forecast to ... --> http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) has announced ...
Breaking Biology News(10 mins):
(Date:2/12/2016)... SAN FRANCISCO , February 12, 2016 /PRNewswire/ ... Precision Medicine Efforts by Enabling Scientific Understanding of ... Disorders and Rare Diseases --> ... for genomic diagnostics in South Asia and a leading ... it would contribute $10 million to the GenomeAsia ...
(Date:2/11/2016)... , Germany and ... QGEN ; Frankfurt Prime Standard: QIA) today ... Targeted RNA Panels for gene expression profiling, expanding QIAGEN,s ... (NGS). The panels enable researchers to select from over ... changes and discover interactions between genes, cellular phenotypes and ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... to delivering cutting-edge information focused on the development and manufacture of biopharmaceuticals ... a premier sponsor of the 2016 BioProcess International Awards – Recognizing Excellence ...
(Date:2/11/2016)... , ... February 11, 2016 , ... ... more than 150 years, continues today to pursue the highest level of accuracy ... analytical instruments: the AR9 Refractometer and the AR5 Refractometer. Accurate, reliable and ...
Breaking Biology Technology: