Navigation Links
Nanotechnology helps track and improve drug action in pancreatic cancer
Date:6/11/2013

UK and Australian scientists have been able to show ways in which we can markedly improve drug targeting of solid tumours, using tiny 'biosensors' along with new advanced imaging techniques.

In real time and in three dimensions, these technologies can show us how cancers spread and how active cancer cells respond to a particular drug. They can also tell us how much, how often and how long to administer drugs. Finally, using preclinical models of the disease, they can guide the use of 'combination therapies', techniques that enhance drug delivery by breaking up the tissue surrounding a tumour.

The study was performed by Dr Paul Timpson of the Garvan Institute of Medical Research and Professor Kurt Anderson of the Beatson Institute for Cancer Research in Glasgow, UK. PhD student Max Nobis studied the signaling protein 'Src', which becomes activated to drive invasive pancreatic cancer, and looked at how it could best be deactivated by a small molecule inhibitor currently in phase II clinical trials known as 'dasatinib'. Their findings are published in the journal Cancer Research, now online.

"We have already shown that Src is activated in pancreatic tumours and we knew that dasatinib deactivates Src and could partially reduce the spread of this form of cancer. Through a collaborative partner in the US, we had access to FRET (Fluorescence Resonance Energy Transfer) imaging technology," said Dr Paul Timpson.

"Until now, we have been limited to studying tumour signalling in two dimensions and lacked a dynamic way of reporting on drug targeting in live tumour tissue. Nanotechnology opens up a portal into living tissue that allows us to watch cancers spreading, and to determine which parts of a tumour we should be targeting with drugs."

"This imaging technology has allowed us to map areas within the tumour that are highly aggressive, allowing us to pinpoint regions of poor drug delivery deep within a tumour at sub-cellular resolution. We can then see where we need to improve on drug delivery to improve clinical outcome."

It has been hard to treat pancreatic tumours because they are extremely dense with collagen and have poor blood vessel networks for delivering drugs.

Professor Kurt Anderson observed that combination therapies can now be used to break down collagen, weakening tumour architecture and making it easier to get the drugs where they need to be. "The trick is to break down the structure just enough to get the drug in, but not so much that you damage the organ itself," he said.

"These new FRET technologies help us gauge what is just enough and not too much."

"These are very exciting discoveries we now have spatial and temporal information about cancer behaviour that we've never had before, as well as the nanotechnology to monitor and improve drug delivery in hard to reach tumour regions."


'/>"/>

Contact: Alison Heather
a.heather@garvan.org.au
61-292-958-128
Garvan Institute of Medical Research
Source:Eurekalert

Related biology news :

1. Purdue professor to speak before Congress about nanotechnology in brain treatment research
2. New study shows how nanotechnology can help detect disease earlier
3. Nanotechnology breakthrough could dramatically improve medical tests
4. Understanding the biological and ecological implications of safe nanotechnology
5. New study shows promise in using RNA nanotechnology to treat cancers and viral infections
6. Realizing the promise of RNA nanotechnology for new drug development
7. Mercury in water, fish detected with nanotechnology
8. European boost for DNA nanotechnology
9. Global Market for Nanotechnology to Reach $3.3 Trillion by 2018
10. Nanotechnology drug delivery shows promise for treatment of pediatric cancer
11. Bioengineer studying how to send drugs to lungs through nanotechnology
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/4/2016)... , Feb. 4, 2016 The ... apparently one of the most popular hubs of ... MetaHIT and other huge studies of human microbiota, ... past few years, the microbiome space has literally ... biomedical research. This report focuses on biomedical ...
(Date:2/2/2016)... Feb. 2, 2016  BioMEMS devices deployed ... focused on medical screening and diagnostic applications, ... Wearable devices that facilitate and assure continuous ... movement are being bolstered through new opportunities ... signal acquisition coupled with wireless connectivity and ...
(Date:2/2/2016)... 2, 2016  Based on its recent analysis ... recognizes US-based Intelligent Retinal Imaging Systems (IRIS) with ... for New Product Innovation. IRIS, a prominent cloud-based ... America , is poised to set the ... retinopathy market. The IRIS technology presents superior price-performance ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... ... February 10, 2016 , ... PatientCrossroads announces ... the secure online PatientCrossroads platform, has exceeded both its one-year and overall recruitment ... PROMPT study, which seeks to advance understanding of the hereditary risks for certain ...
(Date:2/10/2016)... (PRWEB) , ... February 10, 2016 , ... ... regenerative medicine, has announced a new agreement with Singapore-based Global Stem Cells Network ... from the Philippines, Thailand and Singapore in the latest adipose and bone marrow ...
(Date:2/10/2016)... ... February 09, 2016 , ... ... current winner of the Highest Overall Customer Rating Award from Circuits Assembly , ... business units across the USA, Canada, Mexico and China. , The EMS provider, ...
(Date:2/9/2016)... N.J. , Feb. 9, 2016  Regenicin, ... biotechnology company specializing in the development and commercialization ... of damaged tissues and organs, recently reported the ... the first quarter of 2016. Lonza ... the new 2015 fiscal year in the process ...
Breaking Biology Technology: