Navigation Links
Nanotechnology for water filter
Date:7/21/2011

This release is available in German.

Nanotechnology has developed tremendously in the past decade and was able to create many new materials with a vast range of potential applications. Carbon nanotubes are an example of these new materials and consist of cylindrical molecules of carbon with diameters of a few nanometers one nanometer is one millionth of a millimeter. Carbon nanotubes possess exceptional electronic, mechanical and chemical properties, for example they can be used to clean polluted water. Scientists of the University of Vienna had recently published to this new research field in the well-known journal "Environmental Science & Technology".

Among many potential applications, carbon nanotubes are great candidate materials for cleaning polluted water. Many water pollutants have very high affinity for carbon nanotubes and pollutants could be removed from contaminated water by filters made of this nanomaterial, for example water soluble drugs which can hardly be separated from water by activated carbon. Problems due to filters' saturation could be reduced as carbon nanotubes have a very large surface area (e.g. 500 m2 per gram of nanotube) and consequently a very high capacity to retain pollutants. "Maintenance and wastes related to water depollution could thus be reduced", says Thilo Hofmann, Vice Dean of the Faculty of Earth Sciences, Geography and Astronomy of the University of Vienna.

Assessing carbon nanotubes' environmental sustainability

A lot of research has focussed on carbon nanotubes in the past decade. However, the exceptional properties of carbon nanotubes make them difficult to study. Standard methods give limited results and the behaviour of carbon nanotubes in realistic conditions is still poorly understood. "Innovative technologies always come with benefits and drawbacks for human and environmental quality and a good understanding of the interactions between contaminants and carbon nanotubes as well as how carbon nanotubes behave in the environment is essential before they can be used in filters", explains Mlanie Kah, who does research on this project together with Xiaoran Zhang.

A team of researchers at the Department of Environmental Geosciences at the University of Vienna is currently carrying out research on the subject. They developed a method called "passive sampling". Data produced by this new method are much more reliable for realistic applications as they include concentrations likely to occur in the environment (generally very low). This was not possible with classical methods that can only deal with elevated concentrations.

The experiments published now in the internationally recognised journal "Environmental Science & Technology" took more than a year. First, the "passive sampling method" was developed which allows measuring the affinity of a category of carcinogenic contaminants i.e. Polycyclic Aromatic Hydrocarbons (PAHs) to carbon nanotubes. "Series of tests which use analytical chemistry and electron microscopy were performed with collaborators from the University of Utrecht in the Netherlands, to ensure that the method is suitable, reliable and optimised for carbon nanotubes", illustrates Thilo Hofmann. Once validated, the "passive sampling method" was used to measure the affinity (absorption and adsorption) of several contaminants (PAHs) to carbon nanotubes over a very wide range of concentrations.

Contaminants fight for a place on carbon nanotubes

Another aspect investigated by the scientists of the Department for Environmental Geosciences is the phenomenon of competition between contaminants. Many chemicals often co-exist in the environment, especially in polluted bodies of water. If competition occurs, it means that a contaminant may not attach to carbon nanotubes if better competitors co-exist. Competition is not acceptable for filter application as the efficacy of the filter will vary according to the quantity and type of contaminants present. Studying competition also provides information on the mechanisms of sorption.

Using classical techniques with relatively high concentrations showed that competition can be very strong when three PAHs co-exist with carbon nanotubes. Conversely, experiments with the "passive sampling method" at concentrations likely to occur in the environment showed that no competition occurs if 13 PAHs are considered together. This example highlights the importance of developing and using experimental methods to produce results relevant to environmental conditions. There are still many questions to answer to fully evaluate the potential of carbon nanotubes to clean polluted water. "We keep on working on the subject and the results of our last experiments will be soon presented at international conferences", concludes the environmental geoscientist, Thilo Hofmann.


'/>"/>

Contact: Thilo Hofmann
thilo.hofmann@univie.ac.at
43-142-775-3320
University of Vienna
Source:Eurekalert  

Related biology news :

1. Europe rallies behind nanotechnology to wean world from fossil fuels
2. Nanotechnology boosts war on superbugs
3. NIST, NCI bring web 2.0 tools to nanotechnology standards effort
4. Nanotechnology culture war possible, says Yale study
5. Donation for new Center for Pharmaceutical Nanotechnology and Nanotoxicology
6. Nanotechnology holds promise for STD drug delivery
7. University awarded £1.7M to develop nanotechnology for use in health care
8. Singapore nanotechnology combats fatal brain infections
9. New DNA test uses nanotechnology to find early signs of cancer
10. Nanotechnology and synthetic biology: What does the American public think?
11. Step forward for nanotechnology: Controlled movement of molecules
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nanotechnology for water filter
(Date:12/15/2016)... Dec. 15, 2016 Advancements in ... health wellness and wellbeing (HWW), and security ... three new passenger vehicles begin to feature ... recognition, heart beat monitoring, brain wave monitoring, ... monitoring, and pulse detection. These will be ...
(Date:12/15/2016)... 14, 2016 "Increase in mobile transactions is ... mobile biometrics market is expected to grow from USD ... 2022, at a CAGR of 29.3% between 2016 and ... the growing demand for smart devices, government initiatives, and ... "Software component is expected to grow at a high ...
(Date:12/8/2016)... India , Dec. 8, 2016 Market Research Future ... Service Market. The global Mobile Biometric Security and Service Market is ... 2016 to 2022. Market Highlights: ... , , Mobile ... pace due to the increasing need of authentication and security from ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... ... January 19, 2017 , ... ... the full spectrum of drug and device development, and Prism Clinical Research ... and clinicians, today announced Verified Clinical Trials (VCT) has been selected ...
(Date:1/19/2017)... Jan. 18, 2017 Acupath Laboratories, Inc., a ... formation of an Executive Committee that will guide the ... John Cucci , a 15-year veteran of ... of Business Development to Chief Sales Officer .  ... served in senior sales leadership roles at several leading ...
(Date:1/18/2017)... According to a new market research report "In situ ... & End User (Molecular Diagnostic Laboratories, Academic and Research Institutions) - Global Forecast ... Million by 2021 from USD 557.1 Million in 2016, growing at a CAGR ... ... MarketsandMarkets Logo ...
(Date:1/18/2017)... , Jan. 18, 2017   Parent Project Muscular ... to end Duchenne muscular dystrophy (Duchenne) , today ... New Jersey Institute of Technology (NJIT) and Talem Technologies ... of robotic technology to assist people living with ... NJIT,s technology – an embedded computer, software, a force ...
Breaking Biology Technology: