Navigation Links
Nanotechnology for water filter
Date:7/21/2011

This release is available in German.

Nanotechnology has developed tremendously in the past decade and was able to create many new materials with a vast range of potential applications. Carbon nanotubes are an example of these new materials and consist of cylindrical molecules of carbon with diameters of a few nanometers one nanometer is one millionth of a millimeter. Carbon nanotubes possess exceptional electronic, mechanical and chemical properties, for example they can be used to clean polluted water. Scientists of the University of Vienna had recently published to this new research field in the well-known journal "Environmental Science & Technology".

Among many potential applications, carbon nanotubes are great candidate materials for cleaning polluted water. Many water pollutants have very high affinity for carbon nanotubes and pollutants could be removed from contaminated water by filters made of this nanomaterial, for example water soluble drugs which can hardly be separated from water by activated carbon. Problems due to filters' saturation could be reduced as carbon nanotubes have a very large surface area (e.g. 500 m2 per gram of nanotube) and consequently a very high capacity to retain pollutants. "Maintenance and wastes related to water depollution could thus be reduced", says Thilo Hofmann, Vice Dean of the Faculty of Earth Sciences, Geography and Astronomy of the University of Vienna.

Assessing carbon nanotubes' environmental sustainability

A lot of research has focussed on carbon nanotubes in the past decade. However, the exceptional properties of carbon nanotubes make them difficult to study. Standard methods give limited results and the behaviour of carbon nanotubes in realistic conditions is still poorly understood. "Innovative technologies always come with benefits and drawbacks for human and environmental quality and a good understanding of the interactions between contaminants and carbon nanotubes as well as how carbon nanotubes behave in the environment is essential before they can be used in filters", explains Mlanie Kah, who does research on this project together with Xiaoran Zhang.

A team of researchers at the Department of Environmental Geosciences at the University of Vienna is currently carrying out research on the subject. They developed a method called "passive sampling". Data produced by this new method are much more reliable for realistic applications as they include concentrations likely to occur in the environment (generally very low). This was not possible with classical methods that can only deal with elevated concentrations.

The experiments published now in the internationally recognised journal "Environmental Science & Technology" took more than a year. First, the "passive sampling method" was developed which allows measuring the affinity of a category of carcinogenic contaminants i.e. Polycyclic Aromatic Hydrocarbons (PAHs) to carbon nanotubes. "Series of tests which use analytical chemistry and electron microscopy were performed with collaborators from the University of Utrecht in the Netherlands, to ensure that the method is suitable, reliable and optimised for carbon nanotubes", illustrates Thilo Hofmann. Once validated, the "passive sampling method" was used to measure the affinity (absorption and adsorption) of several contaminants (PAHs) to carbon nanotubes over a very wide range of concentrations.

Contaminants fight for a place on carbon nanotubes

Another aspect investigated by the scientists of the Department for Environmental Geosciences is the phenomenon of competition between contaminants. Many chemicals often co-exist in the environment, especially in polluted bodies of water. If competition occurs, it means that a contaminant may not attach to carbon nanotubes if better competitors co-exist. Competition is not acceptable for filter application as the efficacy of the filter will vary according to the quantity and type of contaminants present. Studying competition also provides information on the mechanisms of sorption.

Using classical techniques with relatively high concentrations showed that competition can be very strong when three PAHs co-exist with carbon nanotubes. Conversely, experiments with the "passive sampling method" at concentrations likely to occur in the environment showed that no competition occurs if 13 PAHs are considered together. This example highlights the importance of developing and using experimental methods to produce results relevant to environmental conditions. There are still many questions to answer to fully evaluate the potential of carbon nanotubes to clean polluted water. "We keep on working on the subject and the results of our last experiments will be soon presented at international conferences", concludes the environmental geoscientist, Thilo Hofmann.


'/>"/>

Contact: Thilo Hofmann
thilo.hofmann@univie.ac.at
43-142-775-3320
University of Vienna
Source:Eurekalert  

Related biology news :

1. Europe rallies behind nanotechnology to wean world from fossil fuels
2. Nanotechnology boosts war on superbugs
3. NIST, NCI bring web 2.0 tools to nanotechnology standards effort
4. Nanotechnology culture war possible, says Yale study
5. Donation for new Center for Pharmaceutical Nanotechnology and Nanotoxicology
6. Nanotechnology holds promise for STD drug delivery
7. University awarded £1.7M to develop nanotechnology for use in health care
8. Singapore nanotechnology combats fatal brain infections
9. New DNA test uses nanotechnology to find early signs of cancer
10. Nanotechnology and synthetic biology: What does the American public think?
11. Step forward for nanotechnology: Controlled movement of molecules
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nanotechnology for water filter
(Date:4/14/2016)... Israel , April 14, 2016 ... Authentication and Malware Detection, today announced the appointment of ... assumed the new role. Goldwerger,s leadership appointment ... on the heels of the deployment of its platform ... BioCatch,s behavioral biometric technology, which discerns unique cognitive and ...
(Date:3/29/2016)... March 29, 2016 LegacyXChange, Inc. ... "LEGX" and SelectaDNA/CSI Protect are pleased to announce our ... in a variety of writing instruments, ensuring athletes signatures ... created collectibles from athletes on LegacyXChange will be assured ... the DNA. Bill Bollander , CEO ...
(Date:3/21/2016)... Massachusetts , March 22, 2016 ... facial recognition with passcodes for superior security   ... ), a leading provider of secure digital communications services, ... their biometric technology and offer enterprise customers, particularly those ... secure facial recognition and voice authentication within a mobile ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) ... precise treatments and faster cures for prostate cancer. Members of the Class of ... 15 countries. Read More About the Class of 2016 ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking software ... State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. , ... Tremblay, President and COO of STACS DNA. “In further expanding our capacity as a ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... a new line of intelligent tools designed, tuned and optimized exclusively for Okuma ... 12–17 in Chicago. The result of a collaboration among several companies with expertise ...
Breaking Biology Technology: