Navigation Links
Nanotechnology boosts war on superbugs
Date:10/12/2008

This week Nature Nanotechnology journal (October 12th) reveals how scientists from the London Centre for Nanotechnology (LCN) at UCL are using a novel nanomechanical approach to investigate the workings of vancomycin, one of the few antibiotics that can be used to combat increasingly resistant infections such as MRSA. The researchers, led by Dr Rachel McKendry and Professor Gabriel Aeppli, developed ultra-sensitive probes capable of providing new insight into how antibiotics work, paving the way for the development of more effective new drugs.

During the study Dr McKendry, Joseph Ndieyira, Moyu Watari and coworkers used cantilever arrays tiny levers no wider than a human hair to examine the process which ordinarily takes place in the body when vancomycin binds itself to the surface of the bacteria. They coated the cantilever array with mucopeptides from bacterial cell walls and found that as the antibiotic attaches itself, it generates a surface stress on the bacteria which can be detected by a tiny bending of the levers. The team suggests that this stress contributes to the disruption of the cell walls and the breakdown of the bacteria.

The interdisciplinary team went on to compare how vancomycin interacts with both non-resistant and resistant strains of bacteria. The 'superbugs' are resistant to antibiotics because of a simple mutation which deletes a single hydrogen bond from the structure of their cell walls. This small change makes it approximately 1,000 times harder for the antibiotic to attach itself to the bug, leaving it much less able to disrupt the cells' structure, and therefore therapeutically ineffective.

"There has been an alarming growth in antibiotic-resistant hospital 'superbugs' such as MRSA and vancomycin-resistant Enterococci (VRE)," said Dr McKendry. "This is a major global health problem and is driving the development of new technologies to investigate antibiotics and how they work.

"The cell wall of these bugs is weakened by the antibiotic, ultimately killing the bacteria," she continued. "Our research on cantilever sensors suggests that the cell wall is disrupted by a combination of local antibiotic-mucopeptide binding and the spatial mechanical connectivity of these events. Investigating both these binding and mechanical influences on the cells' structure could lead to the development of more powerful and effective antibiotics in future."

"This work at the LCN demonstrates the effectiveness of silicon-based cantilevers for drug screening applications," added Professor Gabriel Aeppli, Director of the LCN. "According to the Health Protection Agency, during 2007 there were around 7,000 cases of MRSA and more than a thousand cases of VRE in England alone. In recent decades the introduction of new antibiotics has slowed to a trickle but without effective new drugs the number of these fatal infections will increase."


'/>"/>

Contact: Dave Weston
d.weston@ucl.ac.uk
44-020-767-97678
University College London
Source:Eurekalert

Related biology news :

1. Europe rallies behind nanotechnology to wean world from fossil fuels
2. Nanotechnology: A brave new world requires bold new research approaches
3. NSF and EPA establish 2 centers for environmental implications of nanotechnology
4. UCLA, partners establish new center on environmental effects of nanotechnology
5. Duke to lead new NSF, EPA center to study the environmental implications of nanotechnology
6. NSF funds multi-university center to study environmental implications of nanotechnology
7. Halas wins prestigious nanotechnology research award
8. Air-purifying church windows early nanotechnology
9. Emergency response and nanotechnology
10. Multitasking nanotechnology
11. Radiation, nanotechnology, health care and more
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/20/2016)... Jan. 20, 2016   MedNet Solutions , an ... spectrum of clinical research, is pleased to announce the ... achievements are the result of the company,s laser focus ... eClinical , it,s comprehensive, easy-to-use and highly affordable ... --> Key MedNet growth achievements in 2015 include: ...
(Date:1/13/2016)... January 13, 2016 --> ... a new market report titled - Biometric Sensors Market - ... 2015 - 2023. According to the report, the global biometric sensors ... anticipated to reach US$1,625.8 mn by 2023, expanding at ... terms of volume, the biometric sensors market is expected ...
(Date:1/8/2016)... ANGELES and MANCHESTER, United Kingdom ... ("BBI"), a developer of innovative sensor-based diagnostic products, today announced ... financed by new and existing investors.  Proceeds from the financing ... SEM Scanner , a hand-held device for detecting early-stage pressure ... Ireland after receiving CE Mark approval. ...
Breaking Biology News(10 mins):
(Date:2/8/2016)... 8, 2016 --> ... an innovation-driven oncology company developing next generation cancer ... today announced that chairman emeritus of Tata Sons ... the company as part of the first close ... investors Navam Capital and Aarin Capital. ...
(Date:2/8/2016)... 2016  BioElectronics Corporation (OTC Pink: BIEL), the ... that it is responding to a notice of ... and Exchange Commission posted on the agency website.  ... the Board of BioElectronics Corporation and the Edward ... The Fuqua School of Business, Duke University.   ...
(Date:2/8/2016)... ... 2016 , ... Franz Inc. , an early innovator ... announced the availability of AllegroGraph 6, the leading Semantic Graph Database with certification ... Program (CCPT). AllegroGraph is the first Semantic Graph Database to be certified ...
(Date:2/8/2016)... Mich. , Feb. 8, 2016  Diplomat Pharmacy, Inc. (NYSE: DPLO) announced today that its ... a specialty pharmacy resource–user-centric, story-driven, knowledge-based and mobile-friendly. ... ... ... "The goal ...
Breaking Biology Technology: