Navigation Links
Nanotechnology boosts war on superbugs
Date:10/12/2008

This week Nature Nanotechnology journal (October 12th) reveals how scientists from the London Centre for Nanotechnology (LCN) at UCL are using a novel nanomechanical approach to investigate the workings of vancomycin, one of the few antibiotics that can be used to combat increasingly resistant infections such as MRSA. The researchers, led by Dr Rachel McKendry and Professor Gabriel Aeppli, developed ultra-sensitive probes capable of providing new insight into how antibiotics work, paving the way for the development of more effective new drugs.

During the study Dr McKendry, Joseph Ndieyira, Moyu Watari and coworkers used cantilever arrays tiny levers no wider than a human hair to examine the process which ordinarily takes place in the body when vancomycin binds itself to the surface of the bacteria. They coated the cantilever array with mucopeptides from bacterial cell walls and found that as the antibiotic attaches itself, it generates a surface stress on the bacteria which can be detected by a tiny bending of the levers. The team suggests that this stress contributes to the disruption of the cell walls and the breakdown of the bacteria.

The interdisciplinary team went on to compare how vancomycin interacts with both non-resistant and resistant strains of bacteria. The 'superbugs' are resistant to antibiotics because of a simple mutation which deletes a single hydrogen bond from the structure of their cell walls. This small change makes it approximately 1,000 times harder for the antibiotic to attach itself to the bug, leaving it much less able to disrupt the cells' structure, and therefore therapeutically ineffective.

"There has been an alarming growth in antibiotic-resistant hospital 'superbugs' such as MRSA and vancomycin-resistant Enterococci (VRE)," said Dr McKendry. "This is a major global health problem and is driving the development of new technologies to investigate antibiotics and how they work.

"The cell wall of these bugs is weakened by the antibiotic, ultimately killing the bacteria," she continued. "Our research on cantilever sensors suggests that the cell wall is disrupted by a combination of local antibiotic-mucopeptide binding and the spatial mechanical connectivity of these events. Investigating both these binding and mechanical influences on the cells' structure could lead to the development of more powerful and effective antibiotics in future."

"This work at the LCN demonstrates the effectiveness of silicon-based cantilevers for drug screening applications," added Professor Gabriel Aeppli, Director of the LCN. "According to the Health Protection Agency, during 2007 there were around 7,000 cases of MRSA and more than a thousand cases of VRE in England alone. In recent decades the introduction of new antibiotics has slowed to a trickle but without effective new drugs the number of these fatal infections will increase."


'/>"/>

Contact: Dave Weston
d.weston@ucl.ac.uk
44-020-767-97678
University College London
Source:Eurekalert

Related biology news :

1. Europe rallies behind nanotechnology to wean world from fossil fuels
2. Nanotechnology: A brave new world requires bold new research approaches
3. NSF and EPA establish 2 centers for environmental implications of nanotechnology
4. UCLA, partners establish new center on environmental effects of nanotechnology
5. Duke to lead new NSF, EPA center to study the environmental implications of nanotechnology
6. NSF funds multi-university center to study environmental implications of nanotechnology
7. Halas wins prestigious nanotechnology research award
8. Air-purifying church windows early nanotechnology
9. Emergency response and nanotechnology
10. Multitasking nanotechnology
11. Radiation, nanotechnology, health care and more
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/31/2016)... BOCA RATON, Florida , March 31, 2016 /PRNewswire/ ... LEGX ) ("LegacyXChange" or the "Company") ... presentation for potential users of its soon to be ... The video ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also ... by the use of DNA technology to an industry ...
(Date:3/29/2016)... 2016 LegacyXChange, Inc. (OTC: ... SelectaDNA/CSI Protect are pleased to announce our successful effort ... variety of writing instruments, ensuring athletes signatures against counterfeiting ... from athletes on LegacyXChange will be assured of ongoing ... Bill Bollander , CEO states, "By ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Liquid Biotech USA ... a Sponsored Research Agreement with The University of ... from cancer patients.  The funding will be used ... with clinical outcomes in cancer patients undergoing a ... be employed to support the design of a ...
(Date:6/24/2016)... June 24, 2016  Regular discussions on a range of ... between the two entities said Poloz. Speaking at ... Ottawa , he pointed to the country,s inflation target, ... government. "In certain ... institutions have common economic goals, why not sit down and ...
(Date:6/24/2016)... ... , ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension ... are higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... bottom of the cuvette holder. , FireflySci has developed several Agilent flow cell ...
(Date:6/23/2016)... Seattle, WA (PRWEB) , ... June 23, 2016 ... ... technology, announces the release of its second eBook, “Clinical Trials Patient Recruitment and ... patient recruitment and retention in this eBook by providing practical tips, tools, and ...
Breaking Biology Technology: