Navigation Links
Nanotechnology: A dead end for plant cells?
Date:11/16/2010

Using particles that are 1/100,000 the width of a human hair to deliver drugs to cells or assist plants in fighting off pests may sound like something out of a science fiction movie, but these scenarios may be a common occurrence in the near future.

Carbon nanotubes, cylindrically shaped carbon molecules with a diameter of about 1 nanometer, have many potential applications in a variety of fields, such as biomedical engineering and medical chemistry. Proteins, nucleic acids, and drugs can be attached to these nanotubes and delivered to cells and organs. Carbon nanotubes can be used to recognize and fight viruses and other pathogens. However, results of studies in animals have also raised concerns about the potential toxicity of nanoparticles.

Recent research by a team of researchers from China, led by Dr. Nan Yao, explored the effects of nanoparticles on plant cells. The findings of Dr. Yao and his colleagues are published in the October issue of the American Journal of Botany (http://www.amjbot.org/cgi/reprint/97/10/1602).

Dr. Yao and his team of researchers isolated cells from rice as well as from the model plant species Arabidopsis. The researchers treated these cells with carbon nanotubes, and then assessed the cells for viability, damage to DNA, and the presence of reactive oxygen species.

The researchers found an increase in levels of the reactive oxygen species hydrogen peroxide. Reactive oxygen species cause oxidative stress to cells, and this stress can result in programmed cell death. Dr. Yao and his colleagues discovered that the effect of carbon nanotubes on cells was dosage dependentthe greater the dose, the greater the likelihood of cell death. In contrast, cells exposed to carbon particles that were not nanotubes did not suffer any ill effects, demonstrating that the size of the nanotubes is a factor in their toxicity.

"Nanotechnology has a large scope of potential applications in the agriculture industry, however, the impact of nanoparticles have rarely been studied in plants," Dr. Yao said. "We found that nanomaterials could induce programmed cell death in plant cells."

Despite the scientists' observations that carbon nanotubes had toxic effects on plant cells, the use of nanotechnology in the agriculture industry still has great promise. The scientists only observed programmed cell death as a temporary response following the injection of the nanotubes and did not observe further changes a day and a half after the nanotube treatments. Also, the researchers did not observe death at the tissue level, which indicates that injecting cells with carbon nanotubes caused only limited injury.

"The current study has provided evidence that certain carbon nanoparticles are not 100% safe and have side effects on plants, suggesting that potential risks of nanotoxicity on plants need to be assessed," Dr. Yao stated. In the future, Dr. Yao and colleagues are interested in investigating whether other types of nanoparticles may also have toxic effects on plant cells. "We would like to create a predictive toxicology model to track nanoparticles."

Only once scientists have critically examined the risks of nanoparticles can they take advantage of the tremendous potential benefits of this new technology.


'/>"/>

Contact: Richard Hund
rhund@botany.org
314-577-9557
American Journal of Botany
Source:Eurekalert

Related biology news :

1. Step forward for nanotechnology: Controlled movement of molecules
2. Budding research links climate change and earlier flowering plants
3. Using plants against soils contaminated with arsenic
4. Change in temperature uncovers genetic cross talk in plant immunity
5. Biochemistry of how plants resist insect attack determined
6. New research changes understanding of C4 plant evolution
7. Virus component helps improve gene expression without harming plant
8. Gene discovery suggests way to engineer fast-growing plants
9. News tips from a special issue of the International Journal of Plant Sciences
10. U of A researchers can predict heart transplant patients health earlier
11. Single parenthood doesnt pay off for plants
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/2/2017)... LONDON , March 2, 2017 Who ... infringement lawsuits? Download the full report: https://www.reportbuyer.com/product/4313699/ ... ON THE FINGERPRINT SENSOR FIELD? Fingerprint sensors using ... smartphones. The fingerprint sensor vendor Idex forecasts an increase ... in mobile devices and of the fingerprint sensor market ...
(Date:2/28/2017)... 28, 2017   Acuant , a leading provider ... significant enhancements to new and core technologies building upon ... include mobile and desktop Acuant FRM TM facial ... a real time manual review of identity documents by ... the fastest and most accurate capture software to streamline ...
(Date:2/27/2017)... , Feb. 27, 2017   Strategic Cyber Ventures ... it has led a $3.5 million investment in  Polarity ... Strategic Cyber Ventures is DC based and is led ... Hank Thomas . Ron Gula , also a ... also participated in this series A round of funding. ...
Breaking Biology News(10 mins):
(Date:3/22/2017)...  Ascendis Pharma A/S (Nasdaq: ASND), a biopharmaceutical ... address significant unmet medical needs in rare diseases, ... ended December 31, 2016. "2016 ... we broadened our pipeline and pursued our vision ... with an initial focus on endocrinology," said ...
(Date:3/22/2017)... March 22, 2017   iSpecimen ®, the ... Doctors Pathology Service (DPS), a full-service anatomic ... the United States , has joined a ... Information Network (DHIN) to make human biospecimens and ... The novel program, announced in 2015 as a collaboration ...
(Date:3/22/2017)... , March 22, 2017   Boston Biomedical , ... therapeutics designed to target cancer stemness pathways, today announced ... Andrews as Chief Executive Officer, effective April 24, ... Chiang J. Li , M.D., FACP, who has led ... ago. Under his leadership, Boston Biomedical has grown from ...
(Date:3/22/2017)... ... March 21, 2017 , ... Proper glycosylation is ... the desired increase and/or decrease in antibody-dependent cellular cytotoxicity or complement-dependent cytotoxicity, there ... therapeutic antibodies. , To meet this demand, the team at SCIEX has ...
Breaking Biology Technology: