Navigation Links
Nanotech coatings produce 20 times more electricity from sewage
Date:7/21/2010

CORVALLIS, Ore. Engineers at Oregon State University have made a significant advance toward producing electricity from sewage, by the use of new coatings on the anodes of microbial electrochemical cells that increased the electricity production about 20 times.

The findings, just published online in Biosensors and Bioelectronics, a professional journal, bring the researchers one step closer to technology that could clean biowaste at the same time it produces useful levels of electricity a promising new innovation in wastewater treatment and renewable energy.

Engineers found that by coating graphite anodes with a nanoparticle layer of gold, the production of electricity increased 20 times. Coatings with palladium produced an increase, but not nearly as much. And the researchers believe nanoparticle coatings of iron which would be a lot cheaper than gold could produce electricity increases similar to that of gold, for at least some types of bacteria.

"This is an important step toward our goal," said Frank Chaplen, an associate professor of biological and ecological engineering. "We still need some improvements in design of the cathode chamber, and a better understanding of the interaction between different microbial species. But the new approach is clearly producing more electricity."

In this technology, bacteria from biowaste such as sewage are placed in an anode chamber, where they form a biofilm, consume nutrients and grow, in the process releasing electrons. In this context, the sewage is literally the fuel for electricity production.

In related technology, a similar approach may be able to produce hydrogen gas instead of electricity, with the potential to be used in hydrogen fuel cells that may power the automobiles of the future. In either case, the treatment of wastewater could be changed from an energy-consuming technology into one that produces usable energy.

Researchers in the OSU College of Engineering and College of Agricultural Sciences, including Hong Liu, an assistant professor of biological and ecological engineering, are national leaders in development of this technology, which could significantly reduce the cost of wastewater treatment in the United States. It might also find applications in rural areas or developing nations, where the lack of an adequate power supply makes wastewater treatment impractical. It may be possible to create sewage treatment plants that are completely self-sufficient in terms of energy usage.

The technology already works on a laboratory basis, researchers say, but advances are necessary to lower its cost, improve efficiency and electrical output, and identify the lowest cost materials that can be used.

This research has been supported by the National Science Foundation and the Oregon Nanoscience and Microtechnologies Institute.

"Recent advances in nanofabrication provide a unique opportunity to develop efficient electrode materials due to the remarkable structural, electrical and chemical properties of nanomaterials," the researchers wrote in their report. "This study demonstrated that nano-decoration can greatly enhance the performance of microbial anodes."


'/>"/>

Contact: Frank Chaplen
frank.chaplen@oregonstate.edu
541-737-1015
Oregon State University
Source:Eurekalert

Related biology news :

1. Save-the-date: Major nanotech, energy, and biomed meeting
2. Nanotech and synbio: Americans dont know whats coming
3. Europe rallies behind nanotechnology to wean world from fossil fuels
4. Nanotechnology boosts war on superbugs
5. ORNL nanotechnologies big winners in DOE call
6. Survey highlights support for nanotech in health fields but disapproval elsewhere
7. NIST, NCI bring web 2.0 tools to nanotechnology standards effort
8. Nanotechnology culture war possible, says Yale study
9. Donation for new Center for Pharmaceutical Nanotechnology and Nanotoxicology
10. Nanotechnology holds promise for STD drug delivery
11. University awarded £1.7M to develop nanotechnology for use in health care
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/14/2016)... , Nov. 14, 2016  Based on ... market, Frost & Sullivan recognizes FST Biometrics ... Award for Visionary Innovation Leadership. FST Biometrics ... biometric identification market by pioneering In Motion ... for instant, seamless, and non-invasive verification. This ...
(Date:6/22/2016)...  The American College of Medical Genetics and Genomics was ... as one of the fastest-growing trade shows during the Fastest ... in Las Vegas . ... in each of the following categories: net square feet of ... attendees. The 2015 ACMG Annual Meeting was ranked 23 out ...
(Date:6/22/2016)... 22, 2016 On Monday, the Department of ... to share solutions for the Biometric Exit Program. The ... Border Protection (CBP), explains that CBP intends to add ... the United States , in order to ... imposters. Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... Connecticut , November 30, 2016 ... ... Aptuit, LLC today announced that ... library. An additional 150,000 novel compounds have increased the Screening ... to broaden the hit discovery capabilities of the company. This ...
(Date:11/30/2016)... ... November 30, 2016 , ... SSCI, the established leader in ... implications of the latest FDA guidance on pharmaceutical cocrystals as drug substance . ... MA. , The event follows the successful November 15th event that took ...
(Date:11/30/2016)... ... November 30, 2016 , ... ... development of a new orally administered treatment for Alzheimer’s disease (AD), today announced ... a Phase 2a clinical trial of T3D-959 in mild to moderate Alzheimer’s patients ...
(Date:11/30/2016)... ... ... With growth rates averaging more than 30% each year, Random42 has quickly ... their expansion in their new office space. The new office has a fantastic location ... creative industries, so Random42 Scientific Communication will fit right in. , Ben Ramsbottom, ...
Breaking Biology Technology: