Navigation Links
'Nanosponge vaccine' fights MRSA toxins
Date:12/1/2013

Nanosponges that soak up a dangerous pore-forming toxin produced by MRSA (methicillin-resistant Staphylococcus aureus) could serve as a safe and effective vaccine against this toxin. This "nanosponge vaccine" enabled the immune systems of mice to block the adverse effects of the alpha-haemolysin toxin from MRSAboth within the bloodstream and on the skin. Nanoengineers from the University of California, San Diego described the safety and efficacy of this nanosponge vaccine in the December 1 issue of Nature Nanotechnology.

The nanosponges at the foundation of the experimental "toxoid vaccine" platform are bio-compatible particles made of a polymer core wrapped in a red-blood-cell membrane. Each nanosponge's red-blood-cell membrane seizes and detains the Staphylococcus aureus (staph) toxin alpha-haemolysin without compromising the toxin's structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice.

Toxoid vaccines protect against a toxin or set of toxins, rather than the organism that produces the toxin(s). As the problem of antibiotic resistance worsens, toxoid vaccines offer a promising approach to fight infections without reliance on antibiotics.

"With our toxoid vaccine, we don't have to worry about antibiotic resistance. We directly target the alpha-haemolysin toxin," said Liangfang Zhang, a nanoengineering professor at UC San Diego Jacobs School of Engineering and the senior author on the paper. Targeting the alpha-haemolysin toxin directly has another perk. "These toxins create a toxic environment that serves as a defense mechanism which makes it harder for the immune system to fight Staph bacteria," explained Zhang.

Beyond MRSA and other staph infections, the nanosponge vaccine approach could be used to create vaccines that protect against a wide range of toxins, including those produced by E. coli and H. pylori.

This work from Zhang's Nanomaterials and Nanomedicine Laboratory at the UC San Diego included nanoengineering post-doctoral researcher Che-Ming "Jack" Hu, nanoengineering graduate student Ronnie Fang, and bioengineering graduate student Brian Luk.

The researchers found that their nanosponge vaccine was safe and more effective than toxoid vaccines made from heat-treated staph toxin. After one injection, just 10 percent of staph-infected mice treated with the heated version survived, compared to 50 percent for those who received the nanosponge vaccine. With two more booster shots, survival rates with the nanosponge vaccine were up to 100 percent, compared to 90 percent with the heat-treated toxin.

"The nanosponge vaccine was also able to completely prevent the toxin's damages in the skin, where MRSA infections frequently take place," said Zhang, who is also affiliated with the Moores Cancer Center at UC San Diego.

Fighting Pore-Forming Toxins

This work is a twist on a project the UC San Diego nanoengineers presented earlier this year: a nanosponge that can sop up a variety of pore-forming toxinsfrom bacterial proteins to snake venomin the body.

Pore-forming toxins work by punching holes in a cell's membrane and letting the cell essentially leak to death. But when toxins attack the red blood cell membrane draped over the nanoparticle, "nothing will happen. It just locks the toxin there," Zhang explained.

The nanoengineers wondered what would happen if they loaded one of their nanosponges with staph toxin in this way, and presented the whole package to an essential part of the immune system called dendritic cells. Could the loaded particles trigger an immune response and work as a toxoid vaccine?

Staph toxin is so powerful that it kills immune cells in its unaltered form. Most vaccine candidates, therefore, use a heat or chemically processed version of the toxin that unravels some of its proteins and makes it a little weaker. But this process also makes the immune response to the toxin a little weaker.

"The more you heat it, the safer the toxin is, but the more you heat it, the more you damage the structure of the protein," Zhang explained. "And this structure is what the immune cell recognizes, and builds its antibodies against."

The nanosponge toxoid vaccine gets around this problem by detainingbut not changingthe staph toxin. Like a dangerous but handcuffed prisoner, the staph toxin can be led to the dendritic cells of the immune system without causing any harm.

Before this, "there was no way you could deliver a native toxin to the immune cells without damaging the cells," Zhang said. "But this technology allows us to do this."

Each vaccine particle is approximately 85 nanometers in diameter; for comparison, about 1000 of them would fit across the width of a single human hair. They are cleared from the body after injection in about two weeks, the researchers found.

Staphylococcus aureus

Staph bacteria are one of the most common causes of skin infections, and can cause blood poisoning and surgical infections as well as pneumonia. According to the Centers for Disease Control and Prevention, about 80,000 Americans suffer from invasive MRSA infections each year, and over 11,000 of those individuals die. At the moment, there are no vaccines approved to protect humans against the toxins associated with staph infections, including those caused by MRSA strains.

The idea for a staph vaccine came about when the researchers considered the success of their nanosponge. If the particle was so good at collecting toxins, they wondered, what were the potential uses of a particle full of toxin? "To be honest, we never thought about the vaccine use from the beginning," Zhang noted. "But when we do research, we always want to look at a problem in reverse."

In a way, the toxoid vaccine hearkens back to their first use for the particles, as a cancer drug delivery device, Zhang noted.

The particles "work so beautifully," Zhang said, that it might be possible to detain several toxins at once on them, creating "one vaccine against many types of pore-forming toxins," from staph to snake venom.


'/>"/>

Contact: Daniel Kane
dbkane@ucsd.edu
858-534-3262
University of California - San Diego
Source:Eurekalert  

Related biology news :

1. Nanosponges soak up oil again and again
2. New malaria vaccines roadmap targets next generation products by 2030
3. A new DNA vaccine induces a Th2 immune response in Alzheimers disease mice
4. Biomedical Advanced Research and Development Authority (BARDA) Exercises Option with Pfenex Inc. To Extend Contract and Increase Funding for the Development of a Recombinant Protective Antigen (rPA) Based Anthrax Vaccine
5. Reassuring findings released in national study of influenza vaccine safety in pregnancy
6. New investment fund will advance late-stage vaccines, other global health technologies
7. Scientists closer to universal flu vaccine after pandemic natural experiment
8. University of Maryland researchers studying vaccine to prevent potential bird flu pandemic
9. Scientists engineer strain of MERS coronavirus for use in a vaccine
10. IDRI and Zydus sign agreement for development of IDRIs vaccine candidate for visceral leishmaniasis
11. New materials, progress toward an HIV vaccine, and more at meeting of crystallographers
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
'Nanosponge vaccine' fights MRSA toxins
(Date:4/15/2016)... 2016  A new partnership announced today will ... decisions in a fraction of the time it ... high-value life insurance policies to consumers without requiring ... Force Diagnostics, rapid testing (A1C, Cotinine and HIV) ... pressure, weight, pulse, BMI, and activity data) available ...
(Date:3/31/2016)... PROVIDENCE, R.I. , March 31, 2016  Genomics ... leadership of founding CEO, Barrett Bready , M.D., ... addition, members of the original technical leadership team, including ... Vice President of Product Development, Steve Nurnberg and Vice ... have returned to the company. Dr. Bready ...
(Date:3/21/2016)... Unique technology combines v ... security   Xura, Inc. ... digital communications services, today announced it is working alongside ... customers, particularly those in the Financial Services Sector, the ... within a mobile app, alongside, and in combination with, ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... ... May 25, 2016 , ... ... variety of fracture-specific plating options designed to address fractures of the distal tibia ... solutions. , The Acumed Ankle Plating System 3 is composed of seven plate ...
(Date:5/25/2016)... ... 2016 , ... WEDI, the nation’s leading authority on the use of health ... has been named by the WEDI Board of Directors as WEDI’s president and CEO. ... with more than 35 years of experience in healthcare, association management and organizational leadership, ...
(Date:5/24/2016)... 24, 2016   MedyMatch Technology Ltd ., the data ... real-time decision support tools in the emergency room, announced today ... Israeli Advanced Technology Industries (IATI) BioMed Conference. ... 15th National Life Sciences and Technology Week, and is ... Hotel in Tel Aviv, Israel . ...
(Date:5/23/2016)... ... 23, 2016 , ... PrecisionAg® Media has released its latest ... The paper outlines the key trends that are creating both opportunities and challenges ... lot of highs and lows as the precision agriculture market has grown and ...
Breaking Biology Technology: